Skip to main content
Log in

Asymptotic Behavior of Micropolar Fluid Flow Through a Curved Pipe

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We study the stationary motion of a micropolar fluid in a thin (or long) curved pipe via rigorous asymptotic analysis. An asymptotic solution is found, showing explicitly the effects of pipe’s distortion and microstructure on the effective behavior of the flow. We justify the obtained model by proving the corresponding error estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  2. Lukaszewicz, G.: Micropolar Fluids: Theory and Applications. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  3. Ciarletta, M.: Spatial decay estimates for heat–conducting micropolar fluids. Int. J. Eng. Sci. 39, 655–668 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lukaszewicz, G., Rojas-Medas, M.A., Santos, M.M.: Stationary micropolar fluids with boundary data in L 2. J. Math. Anal. Appl. 271, 91–107 (2001)

    Article  Google Scholar 

  5. Stavre, R.: The control of the pressure for a micropolar fluid. Z. Angew. Math. Phys. 53, 912–992 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borelli, A., Patria, M.C., Piras, E.: Spatial decay estimate in steady motion of a micropolar fluid in a pipe. Ann. Univ. Ferrara 50, 1–21 (2004)

    Google Scholar 

  7. Dupuy, D., Panasenko, G., Stavre, R.: Asymptotic methods for micropolar fluids in a tube structure. Math. Models Methods Appl. Sci. 14, 735–758 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dupuy, D., Panasenko, G., Stavre, R.: Asymptotic solution for a micropolar flow in a curvilinear channel. Z. Angew. Math. Mech. 88, 793–807 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Marušić-Paloka, E.: The effects of flexion and torsion for a fluid flow through a curved pipe. Appl. Math. Optim. 44, 245–272 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Marušić-Paloka, E., Pažanin, I.: Fluid flow through a helical pipe. Z. Angew. Math. Phys. 58, 81–99 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Marušić-Paloka, E., Pažanin, I.: On the effects of curved geometry on heat conduction through a distorted pipe. Nonlinear Anal.: Real World Appl. 11, 4554–4564 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marušić-Paloka, E., Pažanin, I.: Modelling of heat transfer in a laminar flow through a helical pipe. Math. Comput. Model. 50, 1571–1582 (2009)

    Article  MATH  Google Scholar 

  13. Germano, M.: On the effect of torsion on a helical pipe flow. J. Fluid Mech. 125, 1–8 (1982)

    Article  MATH  Google Scholar 

  14. Germano, M.: The Dean equations extended to a helical pipe flow. J. Fluid Mech. 203, 289–305 (1989)

    Article  MATH  Google Scholar 

  15. Aero, E.L., Bulganin, A.N., Kuvshinski, E.V.: Asymmetric hydrodynamics. Prikl. Mat. Meh. 29, 297–308 (1965) (in Russian)

    Google Scholar 

  16. Allen, S.J., Kline, K.A.: The effect of concentration in fluid suspension. Trans. Soc. Rheol. 12, 457–468 (1968)

    Article  Google Scholar 

  17. Aganović, I.: An Introduction to Boundary Value Problems of Continuum Mechanics. Element, Zagreb (2003) (in Croatian)

    Google Scholar 

  18. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I. Springer, Berlin (1994)

    Book  Google Scholar 

  19. Marušić-Paloka, E., Pažanin, I.: Non-isothermal fluid flow through a thin pipe with cooling. Appl. Anal. 88, 495–515 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dean, W.R.: Note on the motion of fluid in a curved pipe. Philos. Mag. 4, 208–223 (1927)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Pažanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pažanin, I. Asymptotic Behavior of Micropolar Fluid Flow Through a Curved Pipe. Acta Appl Math 116, 1 (2011). https://doi.org/10.1007/s10440-011-9625-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-011-9625-7

Keywords

Navigation