Skip to main content
Log in

Long Time Evolution of Populations under Selection and Vanishing Mutations

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we consider a long time and vanishing mutations limit of an integro-differential model describing the evolution of a population structured with respect to a continuous phenotypic trait. We show that the asymptotic population is a steady-state of the evolution equation without mutations, and satisfies an evolutionary stability condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bacaer, N.: Verhulst and the logistic equation for population dynamics. Eur. Commun. Math. Theor. Biol. 10, 24–26 (2008)

    Google Scholar 

  2. Barles, G., Mirrahimi, S., Perthame, B.: Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result. Preprint LJLL (2009)

  3. Brown, S., Vincent, T.L.: Coevolution as an evolutionary game. Evolution 41, 66–79 (1987)

    Article  Google Scholar 

  4. Bürger, R.: The Mathematical Theory of Selection, Recombination and Mutation. Wiley, New York (2000)

    MATH  Google Scholar 

  5. Calcina, A., Cuadrado, S.: Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics. J. Math. Biol. 48, 135–159 (2004)

    Article  MathSciNet  Google Scholar 

  6. Calcina, A., Cuadrado, S.: Asymptotic stability of equilibria of selection-mutation equations. J. Math. Biol. 54(4), 489–511 (2007)

    Article  MathSciNet  Google Scholar 

  7. Champagnat, N., Ferrière, R., Méléard, S.: Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor. Popul. Biol. 69, 297–321 (2006)

    Article  MATH  Google Scholar 

  8. Desvillettes, L., PE, Jabin, Mischler, S., Raoul, G.: On selection dynamics for continuous populations. Commun. Math. Sci. 6(3), 729–747 (2008)

    MATH  MathSciNet  Google Scholar 

  9. Diekmann, O.: Beginner’s Guide to Adaptive Dynamics. Banach Center Publ., vol. 63, pp. 47–86. Polish Acad. Sci., Warsaw (2004)

    Google Scholar 

  10. Diekmann, O., PE, Jabin, Mischler, S., Perthame, B.: The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach. Theor. Popul. Biol. 67(4), 257–271 (2005)

    Article  MATH  Google Scholar 

  11. Dieckmann, U., Doebeli, M.: On the origin of species by sympatric speciation. Nature 400, 354–357 (1999)

    Article  Google Scholar 

  12. Doebeli, M., Dieckmann, U.: Evolutionary branching and sympatric speciation caused by different types of ecological interactions. Am. Nat. 156, 77–101 (2000)

    Article  Google Scholar 

  13. Durinx, M., Metz, J.A.J., Meszéna, G.: Adaptive dynamics for physiologically structured population models. J. Math. Biol. 56, 673–742 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Geritz, S.A.H., Kisdi, E., Meszéna, G., Metz, J.A.J.: Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–57 (1998)

    Article  Google Scholar 

  15. Hofbauer, J., Sigmund, K.: Adaptive dynamics and evolutionary stability. Appl. Math. Lett. 3, 75–79 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. PE, Jabin, Raoul, G.: On selection dynamics for competitive interactions. Preprint CMLA-ENS Cachan 17 (2009, submitted)

  17. Kimura, M.: A stochastic model concerning the maintenance of genetic variability in quantitative characters. Proc. Natl. Acad. Sci. USA 54, 731–736 (1965)

    Article  MATH  Google Scholar 

  18. Leimar, O.: Multidimensional convergence stability. Evol. Ecol. Res. 11, 191–208 (2009)

    Google Scholar 

  19. Maynard, Smith J., Price, G.R.: The logic of animal conflict. Nature 246, 15–18 (1973)

    Article  Google Scholar 

  20. Metz, J.A.J., Nisbet, R., Geritz, S.A.H.: How should we define fitness’ for general ecological scenarios? Trends Ecol. Evol. 7, 198–202 (1992)

    Article  Google Scholar 

  21. Perthame, B., Barles, G.: Dirac concentrations in Lotka-Volterra parabolic PDEs. Indiana Univ. Math. J. 57(7), 3275–3301 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Perthame, B., Génieys, S.: Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit. Math. Model. Nat. Phenom. 2(4), 135–151 (2007)

    Article  MathSciNet  Google Scholar 

  23. Raoul, G.: Local stability of evolutionary attractors for continuous structured populations. Preprint CMLA-ENS Cachan 1 (2009, submitted)

  24. Sasaki, A., Ellner, S.: Quantitative genetic variance maintained by fluctuating selection with overlapping generations: variance components and covariances. Evolution 51, 682–696 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaël Raoul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raoul, G. Long Time Evolution of Populations under Selection and Vanishing Mutations. Acta Appl Math 114, 1–14 (2011). https://doi.org/10.1007/s10440-011-9603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-011-9603-0

Keywords

Mathematics Subject Classification (2000)

Navigation