Skip to main content
Log in

Paths, Homotopy and Reduction in Digital Images

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

The development of digital imaging (and its subsequent applications) has led to consideration and investigation of topological notions that are well-defined in continuous spaces, but not necessarily in discrete/digital ones. In this article, we focus on the classical notion of path. We establish in particular that the standard definition of path in algebraic topology is coherent w.r.t. the ones (often empirically) used in digital imaging. From this statement, we retrieve, and actually extend, an important result related to homotopy-type preservation, namely the equivalence between the fundamental group of a digital space and the group induced by digital paths. Based on this sound definition of paths, we also (re)explore various (and sometimes equivalent) ways to reduce a digital image in a homotopy-type preserving fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandroff, P.: Diskrete Räume. Rec. Math. [Mat. Sb.] N.S. 2, 501–519 (1937)

    MATH  Google Scholar 

  2. Arenas, F.G.: Alexandroff spaces. Acta Math. Univ. Comen. 68(1), 17–25 (1999)

    MATH  MathSciNet  Google Scholar 

  3. Barmak, J.A., Minian, E.G.: Minimal finite models. J. Homotopy Relat. Struct. 2(1), 127–140 (2007)

    MATH  MathSciNet  Google Scholar 

  4. Barmak, J.A., Minian, E.G.: One-point reductions of finite spaces, h-regular CW-complexes and collapsibility. Algebraic Geom. Topol. 8(3), 1763–1780 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barmak, J.A., Minian, E.G.: Simple homotopy types and finite spaces. Adv. Math. 218(1), 87–104 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bertrand, G.: New notions for discrete topology. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) Discrete Geometry for Computer Imagery–DGCI’99, 8th International Conference, Proceedings, Marne-la-Vallee, France, 17–19 March 1999. Lecture Notes in Computer Science, vol. 1568, pp. 218–228. Springer, Berlin (1999)

    Chapter  Google Scholar 

  7. Cointepas, Y.: Modélisation homotopique et segmentation tridemensionnelle du cortex cérébral à partir d’IRM pour la résolution des problèmes directs et inverses en EEG et en MEG. Ph.D. thesis, ENST (1999)

  8. Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D and 4D discrete spaces. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 637–648 (2009)

    Article  Google Scholar 

  9. Duda, O., Hart, P.E., Munson, J.H.: Graphical data processing research study and experimental investigation. Technical Report AD650926, Stanford Research Institute (1967)

  10. Hardie, K.A., Vermeulen, J.J.C.: Homotopy theory of finite and locally finite T 0-spaces. Expo. Math. 11, 331–341 (1993)

    MATH  MathSciNet  Google Scholar 

  11. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  12. Hilton, P.J., Wylie, S.: Homology Theory. Cambridge University Press, Cambridge (1960)

    Book  MATH  Google Scholar 

  13. Khalimsky, E.: Topological structures in computer science. J. Appl. Math. Stoch. Anal. 1(1), 25–40 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Khalimsky, E., Kopperman, R., Meyer, P.R.: Computer graphics and connected topologies on finite ordered sets. Topol. Appl. 36(1), 1–17 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Klette, R.: Topologies on the planar orthogonal grid. In: International Conference on Pattern Recognition–ICPR’02, 16th International Conference, Proceedings, Québec, Canada, 11–15 August 2002, vol. 2, pp. 354–357. IEEE Comput. Soc., Los Alamitos (2002)

    Google Scholar 

  16. Kong, T.Y.: A digital fundamental group. Comput. Graph. 13(2), 159–166 (1989)

    Article  Google Scholar 

  17. Kong, T.Y.: The Khalimsky topologies are precisely those simply connected topologies on Z n whose connected sets include all 2n-connected sets but no (3n−1)-disconnected sets. Theor. Comput. Sci. 305(1–3), 221–235 (2003)

    Article  MATH  Google Scholar 

  18. Kong, T.Y., Kopperman, R., Meyer, P.R.: A topological approach to digital topology. Am. Math. Mon. 98(12), 901–917 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kovalevsky, V.A.: Finite topology as applied to image analysis. Comput. Vis. Graph. Image Process. 46(2), 141–161 (1989)

    Article  Google Scholar 

  20. Kukieła, M.: On homotopy types of Alexandroff spaces. Order 27(1), 9–21 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Latecki, L.J.: Multicolor well-composed pictures. Pattern Recognit. Lett. 16(4), 425–431 (1995)

    Article  Google Scholar 

  22. Lee, C., Poston, T., Rosenfeld, A.: Holes and genus of 2D and 3D digital images. Graph. Models Image Process. 55(1), 20–47 (1993)

    Article  Google Scholar 

  23. Lohou, C.: Contribution à l’analyse topologique des images: étude d’algorithmes de squelettisation pour images 2D et 3D selon une approche topologie digitale ou topologie discrète. Ph.D. thesis, Université de Marne-la-Vallée, France (2001)

  24. Maunder, C.R.F.: Algebraic Topology. Dover, New York (1996)

    Google Scholar 

  25. May, A.: A Concise Course in Algebraic Topology. University of Chicago Press, Chicago (1999)

    MATH  Google Scholar 

  26. May, J.P.: Finite spaces and simplicial complexes (2008)

  27. May, J.P.: Finite topological spaces (2008)

  28. Mazo, L., Passat, N., Couprie, M., Ronse, C.: Digital imaging: A unified topological framework. Technical Report hal-00512270, Université Paris-Est (2010)

  29. McCord, M.C.: Singular homology groups and homotopy groups of finite topological spaces. Duke Math. J. 33(3), 465–474 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  30. Munkres, J.: Topology. Prentice Hall, New York (1999)

    Google Scholar 

  31. Osaki, T.: Reduction of finite topological spaces. Interdiscip. Inf. Sci. 5(2), 149–155 (1999)

    MATH  MathSciNet  Google Scholar 

  32. Ronse, C.: An isomorphism for digital images. J. Comb. Theory, Ser. A 39(2), 132–159 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rosenfeld, A.: Connectivity in digital pictures. J. Assoc. Comput. Mach. 17(1), 146–160 (1970)

    MATH  MathSciNet  Google Scholar 

  34. Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J. Assoc. Comput. Mach. 13(4), 471–494 (1966)

    MATH  Google Scholar 

  35. Spanier, E.H.: Algebraic Topology. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  36. Stong, R.E.: Finite topological spaces. Trans. Am. Math. Soc. 123(25), 325–340 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  37. Viro, O.Ya., Ivanov, O.A., Netsvetaev, N.Yu., Kharlamov, V.M.: Elementary Topology: Problem Textbook. AMS, Providence (2008)

    MATH  Google Scholar 

  38. Whitehead, J.H.C.: Simplicial spaces, nuclei and m-groups. Proc. Lond. Math. Soc. (2) 45(1), 243–327 (1939)

    Article  MATH  MathSciNet  Google Scholar 

  39. Whitehead, J.H.C.: Combinatorial homotopy. I. Bull. Am. Math. Soc. 55, 213–245 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  40. Whitehead, J.H.C.: Combinatorial homotopy. II. Bull. Am. Math. Soc. 55, 453–496 (1949)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Mazo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazo, L., Passat, N., Couprie, M. et al. Paths, Homotopy and Reduction in Digital Images. Acta Appl Math 113, 167–193 (2011). https://doi.org/10.1007/s10440-010-9591-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-010-9591-5

Keywords

Navigation