Acta Applicandae Mathematicae

, Volume 115, Issue 1, pp 63–74

Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation

  • Tommy Sonne Alstrøm
  • Mads Peter Sørensen
  • Niels Falsig Pedersen
  • Søren Madsen
Article

Abstract

The time-dependent Ginzburg-Landau equation is solved numerically for type-II superconductors of complex geometry using the finite element method. The geometry has a marked influence on the magnetic vortex distribution and the vortex dynamics. We have observed generation of giant vortices at boundary defects, suppressing the superconducting state far into the superconductor.

Keywords

Type II superconductivity Ginzburg-Landau equation Vortex lattices Giant vortices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064 (1950) Google Scholar
  2. 2.
    Scott, A.C. (Ed.): Encyclopedia of Nonlinear Science. Routledge, New York (2005) MATHGoogle Scholar
  3. 3.
    Gorkov, L.P., Eliashburg, G.M.: Generalization of the Ginzburg-Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Sov. Phys. (JETP) 27, 328 (1968) Google Scholar
  4. 4.
    Gropp, W.D., Kaper, H.G., Leaf, G.K., Levine, D.M., Palumbo, M., Vinokur, V.M.: Numerical simulations of vortex dynamics in Type-II superconductors. J. Comput. Phys. 123, 254–266 (1996) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Du, Q.: Numerical approximations of the Ginzburg-Landau models for superconductivity. J. Math. Phys. 46, 095109 (2005) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Mu, M.: A linearized Crank-Nicolson-Galerkin method for the Ginzburg-Landau model. SIAM J. Sci. Comput. 18(4), 1028–1039 (1997) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gunter, D.O., Kaper, H.G., Leaf, G.K.: Implicit integration of the time-dependent Ginzburg-Landau equations of superconductivity. SIAM J. Sci. Comput. 23(6), 1943–1958 (2002) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chibotaru, L.F., Ceulemans, A.: Ginzburg-Landau description of confinement and quantization effects in mesoscopic superconductors. J. Math. Phys. 46, 095108 (2005) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Geim, A.K., Grigorieva, I.V., Dubonos, S.V., Lok, J.G.S., Maan, J.C., Filippov, A.E., Peeters, F.M., Deo, P.S.: Mesoscopic superconductors as ‘artificial atoms’ made from Cooper pairs. Physica B 249–251, 445–452 (1998) CrossRefGoogle Scholar
  10. 10.
    Berdiyorov, G.R., Cabral, L.R.E., Peeters, F.M.: Surface barrier for flux entry and exit in mesoscopic superconducting systems. J. Math. Phys. 46, 095105 (2005) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Madsen, S., Gaididei, Yu.B., Christiansen, P.L., Pedersen, N.F.: Domain walls and textured vortices in a two-component Ginzburg Landau model. Phys. Lett. A 344(4), 432–440 (2005) MATHCrossRefGoogle Scholar
  12. 12.
    Baelus, B.J., Peeters, F.M.: The effect of surface defects on the vortex expulsion and penetration in mesoscopic superconducting disks. Physica C 408–410, 543–544 (2004) CrossRefGoogle Scholar
  13. 13.
    Peeters, F.M., Schweigert, V.A., Baelus, B.J.: Fractional and negative flux penetration in mesoscopic superconducting disks. Physica C 369, 158–164 (2002) CrossRefGoogle Scholar
  14. 14.
    Vodolazov, D.Y., Maksimov, I.L., Brandt, E.H.: Vortex entry conditions in type-II superconductors. Effect of surface defects. Physica C 384, 211–226 (2003) CrossRefGoogle Scholar
  15. 15.
    Alama, S., Bronsard, L.: Pinning effects and their breakdown for a Ginzburg Landau model with normal inclusions. J. Math. Phys. 46, 095102 (2005) CrossRefMathSciNetGoogle Scholar
  16. 16.
    García, L.C., Giraldo, J.: Giant vortex state in mesoscopic superconductors. Phys. Stat. Sol. (c) 2, 3609–3612 (2005) CrossRefGoogle Scholar
  17. 17.
    Peeters, F.M., Schweigert, V.A., Baelus, B.J., Deo, P.S.: Vortex matter in mesoscopic superconducting disks and rings. Physica C 332, 255–262 (2000) CrossRefGoogle Scholar
  18. 18.
    Sardella, E., Malvezzi, A.L., Lisboa-Filho, P.N., Ortiz, W.A.: Temperature-dependent vortex motion in a square mesoscopic superconducting cylinder: Ginzburg-Landau calculations. Phys. Rev. B 74, 014512 (2006) CrossRefGoogle Scholar
  19. 19.
    McLaughlin, D.W., Scott, A.C.: Perturbation analysis of fluxon dynamics. Phys. Rev. A 18(4), 1652–1680 (1978) CrossRefGoogle Scholar
  20. 20.
    Tinkham, M.: Introduction to Superconductivity. McGraw-Hill, New York (1996) Google Scholar
  21. 21.
    Du, Q.: Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity. Appl. Anal. 53(1), 2716–2723 (1994) CrossRefGoogle Scholar
  22. 22.
    Zimmerman, W.B.J.: Multiphysics Modelling with Finite Element Methods. World Scientific, Singapore (2006) MATHGoogle Scholar
  23. 23.
    COMSOL, Comsol Multiphysics Modeling Guide, Version 3.5a. www.comsol.com (2009)

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Tommy Sonne Alstrøm
    • 1
  • Mads Peter Sørensen
    • 2
  • Niels Falsig Pedersen
    • 2
  • Søren Madsen
    • 3
  1. 1.Department of InformaticsTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.Department of MathematicsTechnical University of DenmarkKongens LyngbyDenmark
  3. 3.Mads Clausen InstituteUniversity of Southern DenmarkSønderborgDenmark

Personalised recommendations