Skip to main content
Log in

Mathematical Analysis and Pattern Formation for a Partial Immune System Modeling the Spread of an Epidemic Disease

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Our motivation is a mathematical model describing the spatial propagation of an epidemic disease through a population. In this model, the pathogen diversity is structured into two clusters and then the population is divided into eight classes which permits to distinguish between the infected/uninfected population with respect to clusters. In this paper, we prove the weak and the global existence results of the solutions for the considered reaction-diffusion system with Neumann boundary. Next, mathematical Turing formulation and numerical simulations are introduced to show the pattern formation for such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, L.J.S., Langlais, M., Philipps, C.J.: The dynamics of two viral infections in a single host population with applications to hantavirus. Math. Biosci. 186(2), 191–217 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases and Its Applications, 2nd edn. Hafner, New York (1975)

    MATH  Google Scholar 

  3. Barrio, R.A., Verea, C., Aragon, J.L., Maini, P.K.: A two-dimensional numerical study of spatial pattern formation in interaction systems. Bull. Math. Biol. 61, 43–505 (1999)

    Article  Google Scholar 

  4. Busenberg, S., Cooke, K.: Vertically Transmitted Diseases. Biomathematics, vol. 23. Springer, Berlin (1993)

    MATH  Google Scholar 

  5. Cattaneo, C.: Sur une forme de l’equation de la chaleur elinant le paradoxe d’une propagation instantance. C. R. Acad. Sci. 247, 431–432 (1958)

    MathSciNet  Google Scholar 

  6. Diekmann, O., Hessterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases. Mathematical and Computational Biology. Wiley, Chichester (2000)

    Google Scholar 

  7. Gomes, M.G.M., Medley, G.F., Nokes, D.J.: On the determinants of population structure in antigentically diverse pathogens. Proc. R. Soc. Lond. B 269, 227–233 (2002)

    Article  Google Scholar 

  8. Gupta, S., Maiden, M.C.J.: Exploring the evolution of diversity in pathogen populations. Trends Microbiol. 9, 181–185 (2001)

    Article  Google Scholar 

  9. Eden, A., Michaux, B., Rakotoson, J.M.: Doubly nonlinear parabolic equations as dynamical systems. J. Dyn. Differ. Equ. 3(1), 87–131 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fitzgibbon, W.E., Langlais, M., Morgan, J.J.: A mathematical model for indirectly transmitted diseases. Math. Biosci. 206(2), 233–248 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fromont, E., Pontier, D., Langlais, M.: Dynamics of a feline retrovirus (FeLV) in host populations with variable spatial structure. Proc. R. Soc. Lond. B 265, 1097–1104 (1998)

    Article  Google Scholar 

  12. Hollis, S., Martin, R.H., Pierre, M.: Global existence and boundedness in reaction diffusion systems. SIAM J. Math. Anal. 18, 744–761 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ladyzhenskaya, O.A., Solonnikov, V., Ural’ceva, N.: Linear and Quasi-Linear Equations of Parabolic Type. Transl. AMS, vol. 23. Am. Math. Soc., Providence (1968)

    MATH  Google Scholar 

  14. Morgan, J.J.: Global existence for semilinear parabolic systems. SIAM J. Math. Anal. 20, 1128–1144 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Morgan, J.J.: Boundedness and decay results for reaction diffusion systems. SIAM J. Math. Anal. 21, 1172–1184 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Morgan, J.J., Hollis, S.L.: The existence of periodic solutions to reaction-diffusion systems with periodic data. SIAM J. Math. Anal. 26, 1225–1232 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Murray, J.D.: Mathematical Biology I: An Introduction, 3rd edn. Springer, Berlin (2003)

    Google Scholar 

  18. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  19. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  Google Scholar 

  20. Simon, J.: Compact sets in the space L p(0,T;B). Ann. Math. Pura Appl. 65–96 (1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazen Saad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendahmane, M., Saad, M. Mathematical Analysis and Pattern Formation for a Partial Immune System Modeling the Spread of an Epidemic Disease. Acta Appl Math 115, 17–42 (2011). https://doi.org/10.1007/s10440-010-9569-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-010-9569-3

Keywords

Mathematics Subject Classification (2000)

Navigation