Skip to main content
Log in

A fully benzenoid system has a unique maximum cardinality resonant set

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

A benzenoid system is a 2-connected plane graph such that its each inner face is a regular hexagon of side length 1. A benzenoid system is Kekuléan if it has a perfect matching. Let P be a set of hexagons of a Kekuléan benzenoid system B. The set P is called a resonant set of B if the hexagons in P are pair-wise disjoint and the subgraph BP (obtained by deleting from B the vertices of the hexagons in P) is either empty or has a perfect matching. It was shown (Gutman in Wiss. Z. Thechn. Hochsch. Ilmenau 29:57–65, 1983; Zheng and Chen in Graphs Comb. 1:295–298, 1985) that for every maximum cardinality resonant set P of a Kekuléan benzenoid system B, the subgraph BP is either empty or has a unique perfect matching. A Kekuléan benzenoid system B is said to be fully benzenoid if there exists a maximum cardinality resonant set P of B, such that the subgraph BP is empty. It is shown that a fully benzenoid system has a unique maximum cardinality resonant set, a well-known statement that, so far, has remained without a rigorous proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Austria)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sachs, H.: Perfect matchings in hexagonal systems. Combinatorica 4, 89–99 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Harary, F., Harborth, H.: Extremal animals. J. Comb. Inf. Syst. Sci. 1, 1–8 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Shiu, W.C., Lam, P.B.C.: The Wiener number of hexagonal nets. Discrete Appl. Math. 73, 101–111 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dobrynin, A.A., Gutman, I., Klavžar, S., Žigert, P.: Wiener index of hexagonal systems. Acta Appl. Math. 72, 247–294 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Taranenko, A., Vesel, A.: On elementary benzenoid graphs: new characterization and structure of their resonance graphs. MATCH Commun. Math. Comput. Chem. 60, 193–216 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Gutman, I., Cyvin, S.J.: Introduction to the Theory of Benzenoid Hydrocarbons. Springer, Berlin (1989)

    Google Scholar 

  7. Gutman, I., Cyvin, S.J. (eds.): Advances in the Theory of Benzenoid Hydrocarbons. Springer, Berlin (1990)

    Google Scholar 

  8. Gutman, I. (ed.): Advances in the Theory of Benzenoid Hydrocarbons II. Springer, Berlin (1992)

    Google Scholar 

  9. Randić, M.: Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 103, 3449–3605 (2003)

    Article  Google Scholar 

  10. Brinkmann, G., Grothaus, C., Gutman, I.: Fusenes and benzenoids with perfect matchings. J. Math. Chem. 42, 909–924 (2007)

    Article  MathSciNet  Google Scholar 

  11. Gutman, I., Cyvin, S.J.: Kekuléan and non-Kekuléan benzenoid hydrocarbons. J. Serb. Chem. Soc. 53, 391–409 (1988)

    Google Scholar 

  12. Hansen, P., Jaumard, B., Sachs, H., Zheng, M.: Finding a Kekulé structure in a benzenoid system in linear time. J. Chem. Inf. Comput. Sci. 35, 561–567 (1995)

    Google Scholar 

  13. Hansen, P., Zheng, M.: A linear algorithm for perfect matching in hexagonal systems. Discrete Math. 122, 179–196 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Clar, E.: The Aromatic Sextet. Wiley, London (1972)

    Google Scholar 

  15. Hosoya, H., Yamaguchi, T.: Sextet polynomial. A new enumeration and proof technique for the resonance theory applied to the aromatic hydrocarbons. Tetrahedron Lett. 52, 4659–4662 (1975)

    Article  Google Scholar 

  16. Gutman, I.: Some combinatorial consequences of Clar’s resonant sextet theory. MATCH Commun. Math. Comput. Chem. 11, 127–143 (1981)

    Google Scholar 

  17. Gutman, I.: Covering hexagonal systems with hexagons. In: 4th Yugoslav Seminar on Graph Theory, Institute of Mathematics, University of Novi Sad, Novi Sad, pp. 151–160 (1983)

  18. Hansen, P., Zheng, M.: Upper bounds for the Clar number of a benzenoid hydrocarbon. J. Chem. Soc. Faraday Trans. 88, 1621–1625 (1992)

    Article  Google Scholar 

  19. Gutman, I.: Topological properties of benzenoid systems, XIX: contributions to the aromatic sextet theory. Wiss. Z. Thechn. Hochsch. Ilmenau 29, 57–65 (1983)

    MATH  Google Scholar 

  20. Zheng, M., Chen, R.: A maximal cover of hexagonal systems. Graphs Comb. 1, 295–298 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Balaban, A.T., Schmalz, T.G.: Strain–free sextet-resonant benzenoids and their antisextet dualists. J. Chem. Inf. Model. 46, 1563–1579 (2006)

    Article  Google Scholar 

  22. Cyvin, B.N., Brunvoll, J., Cyvin, S.J., Gutman, I.: All-benzenoid systems: enumeration and classification of benzenoid hydrocarbons, VI. MATCH Commun. Math. Comput. Chem. 23, 163–173 (1988)

    MathSciNet  MATH  Google Scholar 

  23. Gutman, I.: Cyclic conjugation in fully benzenoid hydrocarbons. Rep. Mol. Theory 1, 115–119 (1990)

    Google Scholar 

  24. Gutman, I., Babić, D.: Characterization of all–benzenoid hydrocarbons. J. Mol. Struct. (THEOCHEM) 251, 367–373 (1991)

    Article  Google Scholar 

  25. Gutman, I., Cyvin, S.J.: All-benzenoid systems: topological properties of benzenoid systems, LVII. MATCH Commun. Math. Comput. Chem. 23, 175–178 (1988)

    MathSciNet  MATH  Google Scholar 

  26. Gutman, I., Cyvin, S.J.: Fully-arenoid hydrocarbons. MATCH Commun. Math. Comput. Chem. 30, 93–102 (1994)

    Google Scholar 

  27. Polansky, O.E., Gutman, I.: Graph-theoretical treatment of aromatic hydrocarbons, V: the number of Kekulé structures in an all-benzenoid aromatic hydrocarbon. MATCH Commun. Math. Comput. Chem. 8, 269–290 (1980)

    Google Scholar 

  28. Polansky, O.E., Rouvray, D.H.: Graph-theoretical treatment of aromatic hydrocarbons, II: the analysis of all-benzenoid systems. MATCH Commun. Math. Comput. Chem. 2, 91–109 (1976)

    Google Scholar 

  29. Randić, M.: Fully benzenoid systems revisited. J. Mol. Struct. (THEOCHEM) 229, 139–153 (1991)

    Article  Google Scholar 

  30. Diestel, R.: Graph theory, 3rd edn. Graduate Texts in Mathematics, vol. 173. Springer, Berlin (2005)

    MATH  Google Scholar 

  31. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)

    Google Scholar 

  32. West, D.B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Salem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutman, I., Salem, K. A fully benzenoid system has a unique maximum cardinality resonant set. Acta Appl Math 112, 15–19 (2010). https://doi.org/10.1007/s10440-009-9550-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-009-9550-1

Keywords

Mathematics Subject Classification (2000)