Skip to main content
Log in

Semiorthogonal Multiresolution Analysis Frames in Higher Dimensions

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Benedetto and Li proposed the theory of frame multiresolution analysis (FMRA) in one dimension. This paper generalizes Benedetto and Li’s theory of FMRA to higher dimensions with arbitrary integral expansive matrix dilations, and gives two necessary and sufficient conditions to characterize (semiorthogonal) multiresolution analysis frames for L 2(ℝn). One of the two conditions is put on the frame scaling function and the low-pass and high-pass filters only. Multiresolution analysis Parseval frames are also characterized. The theory is implemented to a bidimensional example with the nonseparable quincunx dilation \(\scriptsize\bigl(\begin{array}{c@{\ }c}1&-1\\1&1\end{array}\bigr)\) , along with its potential application in subband signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baggett, L., Medina, H., Merrill, K.: Generalized multiresolution analysis, and a construction procedure for all wavelets sets in ℝn. J. Fourier Anal. Appl. 5, 563–573 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benedetto, J.J., Li, S.: Subband coding and noise reduction in multiresolution analysis frames. Proc. SPIE 2303, 154–165 (1994)

    Article  Google Scholar 

  3. Benedetto, J.J., Li, S.: The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmon. Anal. 5, 389–427 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benedetto, J.J., Romero, J.: The construction of d-dimensional MRA frames. J. Appl. Funct. Anal. 2, 403–426 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Benedetto, J.J., Treiber, O.: Wavelet frames: multiresolution analysis and extension principles. In: Debnath, L. (ed.) Wavelet Transforms and Time-Frequency Signal Analysis, pp. 1–36. Birkhäuser, Boston (2001)

    Google Scholar 

  6. de Boor, C., DeVore, R., Ron, A.: On the construction of multivariate (pre) wavelets. Constr. Approx. 9, 123–166 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Casazza, P.G., Christensen, O., Kalton, N.J.: Frames of translates. Collect. Math. 52(1), 35–54 (2001)

    MATH  MathSciNet  Google Scholar 

  8. Christensen, O.: An Introduction to Frames and Riesz Base. Birkhäuser, Boston (2003)

    Google Scholar 

  9. Cohen, A., Daubechies, I.: Nonseparable bidimensional wavelet bases. Rev. Mat. Iberoam. 9(1), 51–137 (1993)

    MATH  MathSciNet  Google Scholar 

  10. Dai, X., Diao, Y., Gu, Q., Han, D.: Frame wavelet sets in ℝd. J. Comput. Appl. Math. 155(1), 69–82 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dai, X., Larson, D., Speegle, D.: Wavelet sets in ℝn. J. Fourier Anal. Appl. 3, 451–456 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  13. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    MATH  MathSciNet  Google Scholar 

  14. Gröchenig, K.H., Haas, A.: Self-similar lattice tilings. J. Fourier Anal. Appl. 1(2), 131–170 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gröchenig, K.H., Madych, W.R.: Multiresolution analysis, Haar bases, and self-similar tilings of ℝn. IEEE Trans. Inf. Theory 38(2), 556–568 (1992)

    Article  Google Scholar 

  16. Han, B., Jia, R.-Q.: Quincunx fundamental refinable functions and quincunx biorthogonal wavelets. Math. Comput. 71(237), 165–196 (2002)

    MATH  MathSciNet  Google Scholar 

  17. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  18. Kovačević, J., Vetterli, M.: Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for ℝn. IEEE Trans. Inf. Theory 38(2), 533–555 (1992)

    Article  Google Scholar 

  19. Mallat, S.: Multiresolution approximations and wavelet orthonormal basis of L 2(ℝ). Trans. Am. Math. Soc. 315, 69–87 (1989)

    MATH  MathSciNet  Google Scholar 

  20. Meyer, Y.: Ondelettes, fonctions splines et analyses graduées. Rend. Sem. Mat. Univ. Politec. Torino 45, 1–42 (1987)

    MATH  Google Scholar 

  21. Merikoski, J.K., Virtanen, A.: Bounds for eigenvalues using the trace and determinant. Linear Algebra Appl. 264, 101–108 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Romero, J.R.: Generalized multiresolution analysis: construction and measure theoretic characterization, PhD dissertation, the University of Maryland. College Park, USA (2005)

  23. Ron, A., Shen, Z.: Frames and stable bases for shift-invariant subspaces of L 2(ℝd). Can. J. Math. 47, 1051–1094 (1995)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojiang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X. Semiorthogonal Multiresolution Analysis Frames in Higher Dimensions. Acta Appl Math 111, 257–286 (2010). https://doi.org/10.1007/s10440-009-9544-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-009-9544-z

Keywords

Mathematics Subject Classification (2000)

Navigation