Skip to main content
Log in

Stochastic Control Methods: Hedging in a Market Described by Pure Jump Processes

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper considers the asset price movements in a financial market with a risky asset and a bond. The dynamics of the risky asset, modeled by a marked point process, depend on a stochastic factor, modeled also by a marked point process. The possibility of common jump times with the price is allowed. The problem studied is to determine a strategy maximizing the expected value of a utility function of the hedging error. Two different approaches are considered: an Hamilton Jacobi Bellmann equation is studied for a simplified model and a contraction technique is introduced for a more general model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellini, F., Frittelli, M.: On the existence of minimax martingale measures. Math. Finance 12(1), 1–21 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bertsekas, D.P., Shreve, S.E.: Stochastic Optimal Control: The Discrete Time Case. Academic Press, New York (1978)

    MATH  Google Scholar 

  3. Biagini, S., Frittelli, M.: Utility maximization in incomplete markets for unbounded processes. Finance Stoch. 9(4), 493–517 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brémaud, P.: Point Processes and Queues. Springer Series in Statistics. Springer, Berlin (1981)

    MATH  Google Scholar 

  5. Callegaro, G., Vargiolu, T.: Optimal portfolio for HARA utility functions in a pure jump multidimensional incomplete market. Int. J. Risk Assess. Manag. 11, 180–200 (2009)

    Article  Google Scholar 

  6. Ceci, C.: Risk minimizing hedging for a partially observed high frequency data model. Stochastics 78(1), 13–31 (2006)

    MATH  MathSciNet  Google Scholar 

  7. Ceci, C., Gerardi, A.: Pricing for geometric marked point processes under partial information: entropy approach. Int. J. Theor. Appl. Finance 12(2), 179–207 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ceci, C., Gerardi, A.: Utility-based Hedging and Pricing with a nontraded asset for jump processes. Nonlinear Anal. Theory Methods Appl. (2009). doi:10.1016/j.na.2009.02.105

    Google Scholar 

  9. Ceci, C., Gerardi, A.: Wealth optimization and dual problems for jump stock dynamics with stochastic factor. Int. J. Probab. Stoch. Processes (2009, to appear)

  10. Centanni, S., Minozzo, M.: A Monte Carlo approach to filtering for a class of marked doubly stochastic Poisson processes. J. Am. Stat. Assoc. 101(476), 1582–1597 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Centanni, S., Minozzo, M.: Estimation and filtering by reversible jump MCMC for a doubly stochastic Poisson model for ultra-high-frequency financial data. Stat. Model. 6(2), 97–118 (2006)

    Article  MathSciNet  Google Scholar 

  12. Delbaen, F., Grandits, P., Rheinlander, T., Samperi, D., Schweizer, M., Stricker, C.: Exponential hedging and entropic penalties. Math. Finance 12(2), 99–123 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986)

    MATH  Google Scholar 

  14. Frey, R.: Risk minimization with incomplete information in a model for high frequency data. Math. Finance 10(2), 215–225 (2000). INFORMS Applied Probability Conference (Ulm, 1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Frey, R., Runggaldier, W.J.: A nonlinear filtering approach to volatility estimation with a view towards high frequency data. Int. J. Theor. Appl. Finance 4(2), 199–210 (2001). Information Modeling in Finance (Evry, 2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Frittelli, M.: The minimal entropy martingale measure and the valuation problem in incomplete markets. Math. Finance 10, 39–52 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Frittelli, M.: Introduction to a theory of value coherent with the no-arbitrage principle. Finance Stoch. 4, 275–297 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gerardi, A., Tardelli, P.: Filtering on a partially observed ultra-high-frequency data model. Acta Appl. Math. 91(2), 193–205 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gerardi, A., Tardelli, P.: Risk-neutral measures and pricing for a pure jump price process: a stochastic control approach. Probab. Eng. Inf. Sci. (2009, to appear). Technical Report R. 08-107, Department of Electrical and Information Engineering, University of L’Aquila, http://www.diel.univaq.it/research/

  20. Henderson, V.: Valuation of claims on nontraded asset using utility maximization. Math. Finance 12(4), 351–373 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer, New York (1998)

    MATH  Google Scholar 

  22. Kirch, M., Runggaldier, W.J.: Efficient hedging when asset prices follow a geometric Poisson process with unknown intensities. SIAM J. Control Optim. 43, 1174–1195 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9, 904–950 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Merton, R.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51, 247–257 (1969)

    Article  Google Scholar 

  25. Merton, R.: Optimal consumption and portfolio rules in a continuous time model. J. Econ. Theory 3, 373–413 (1971)

    Article  MathSciNet  Google Scholar 

  26. Musiela, M., Zariphopoulou, T.: An example of indifference prices under exponential preferences. Finance Stoch. 8, 229–239 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Prigent, J.L.: Option pricing with a general marked point process. Math. Oper. Res. 26(1), 50–66 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ridberg, T.H., Shephard, N.: A modeling framework for the prices and times of trades made on the New York stock exchange. In: W.J. Fitzgerald, R.L. Smith, A.T. Walden, P.C. Young (eds.) Nonlinear and Nonstationary Signal Processing, pp. 217–246 (2000)

  29. Rogers, L.C.G., Zane, O.: Designing models for high frequency data. Preprint University of Bath (1998)

  30. Schweizer, M.: A guided tour through quadratic hedging approaches. In: Option Pricing, Interest Rates and Risk Management. Handb. Math. Finance, pp. 538–574. Cambridge Univ. Press, Cambridge (2001)

    Chapter  Google Scholar 

  31. Zariphopoulou, T.: A solution approach to valuation with unhedgeable risks. Finance Stoch. 5(1), 61–82 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Tardelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerardi, A., Tardelli, P. Stochastic Control Methods: Hedging in a Market Described by Pure Jump Processes. Acta Appl Math 111, 233–255 (2010). https://doi.org/10.1007/s10440-009-9543-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-009-9543-0

Keywords

Mathematics Subject Classification (2000)

Navigation