Skip to main content
Log in

A Geometrical Approach to Indefinite Least Squares Problems

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Given Hilbert spaces ℋ and \(\mathcal {K}\) , a (bounded) closed range operator \(C:\mathcal {H}\rightarrow \mathcal {K}\) and a vector \(y\in \mathcal {K}\) , consider the following indefinite least squares problem: find u∈ℋ such that 〈B(Cuy),Cuy〉=min x∈ℋB(Cxy),Cxy〉, where \(B:\mathcal {K}\rightarrow \mathcal {K}\) is a bounded selfadjoint operator.

This work is devoted to give necessary and sufficient conditions for the existence of solutions of this abstract problem. Although the indefinite least squares problem has been thoroughly studied in finite dimensional spaces, the geometrical approach presented in this manuscript is quite different from the analytical techniques used before. As an application we provide some new sufficient conditions for the existence of solutions of an ℋ estimation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Israel, A., Greville, T.N.E.: Generalized Inverse: Theory and Applications. Springer, Berlin (2003)

    MATH  Google Scholar 

  2. Bognár, J.: Indefinite Inner Product Spaces. Springer, Berlin (1974)

    MATH  Google Scholar 

  3. Chandrasekaran, S., Gu, M., Sayed, A.H.: A stable and efficient algorithm for the indefinite least squares problem. SIAM J. Matrix Anal. Appl. 20(2), 354–362 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chipman, J.S.: On least squares with insufficient observations. J. Am. Stat. Assoc. 59, 1078–1111 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chipman, J.S.: Specification problems in regression analysis. In: Proc. Sympos. Theory and Application of Generalized Inverses of Matrices (Lubbock, Texas, 1968), pp. 114–176. Texas Tech. Press, Lubbock (1968)

    Google Scholar 

  6. Corach, G., Maestripieri, A.: Weighted generalized inverses, oblique projections and least squares problems. Numer. Funct. Anal. Optim. 26(6), 659–673 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Corach, G., Maestripieri, A., Stojanoff, D.: Oblique projections and Schur complements. Acta Sci. Math. (Szeged) 67, 337–256 (2001)

    MATH  MathSciNet  Google Scholar 

  8. Corach, G., Maestripieri, A., Stojanoff, D.: Oblique projections and abstract splines. J. Approx. Theory 117, 189–206 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Corach, G., Maestripieri, A., Stojanoff, D.: A classification of projectors. Banach Cent. Publ. 67, 145–160 (2004)

    MathSciNet  Google Scholar 

  10. Dixmier, J.: Etudes sur les variétés et opérateurs de Julia, avec quelques applications. Bull. Soc. Math. France 77, 11–101 (1949)

    MATH  MathSciNet  Google Scholar 

  11. Eldén, L.: Perturbation theory for the least squares problem with linear equality constraints. SIAM J. Numer. Anal. 17(3), 338–350 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  12. Golub, G.H., Van Loan, C.F.: An analysis of the total least squares problem. SIAM J. Numer. Anal. 17(6), 883–893 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hassi, S., Nordström, K.: On projections in a space with an indefinite metric. Linear Algebra Appl. 208/209, 401–417 (1994)

    Article  Google Scholar 

  14. Hassibi, B., Sayed, A.H., Kailath, T.: ℋ optimality criteria for LMS and backpropagation. Adv. Neural Inf. Process. Syst. 6, 351–359 (1994)

    Google Scholar 

  15. Hassibi, B., Sayed, A.H., Kailath, T.: Linear estimation in Krein spaces—Part I: Theory. IEEE Trans. Autom. Control 41(1), 18–33 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hassibi, B., Sayed, A.H., Kailath, T.: Linear estimation in Krein spaces—Part II: Application. IEEE Trans. Autom. Control 41(1), 33–49 (1996)

    Google Scholar 

  17. Hassibi, B., Sayed, A.H., Kailath, T.: Indefinite-Quadratic Estimation and Control. A Unified Approach to ℋ2 and ℋ Theories. Studies in Applied and Numerical Mathematics. SIAM, Philadelphia (1999)

    Google Scholar 

  18. Iokhvidov, I.S., Azizov, T.Ya.: Linear Operators in Spaces with an Indefinite Metric. Wiley, New York (1989)

    Google Scholar 

  19. Maestripieri, A., Martínez Pería, F.: Decomposition of selfadjoint projections in Krein spaces. Acta Sci. Math. 72, 611–638 (2006)

    MATH  Google Scholar 

  20. Mary, X.: Moore-Penrose inverse in Krein spaces. Integral. Equ. Oper. Theory 60(3), 419–433 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Morley, T.D.: A Gauss-Markov theorem for infinite-dimensional regression models with possibly singular covariance. SIAM J. Appl. Math. 37(2), 257–260 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nagpal, K.M., Khargonekar, P.P.: Filtering and smoothing in an ℋ setting. IEEE Trans. Autom. Control 36, 152–166 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rao, C., Mitra, S.K.: Theory and application of constrained inverse of matrices. SIAM J. Appl. Math. 24, 473–488 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sayed, A.H., Hassibi, B., Kailath, T.: Fundamental Inertia Conditions for the Minimization of Quadratic Forms in Indefinite Metric Spaces. Oper. Theory: Adv. Appl. Birkhauser, Cambridge (1996)

    Google Scholar 

  25. Sheng, X., Chen, G.: The generalized weighted Moore-Penrose inverse. J. Appl. Math. Comput. 25, 407–413 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Martínez Pería.

Additional information

Partially supported by PIP 5272 (CONICET), UBACyT I023, ANPCyT 1728 PICT06.

Partially supported by PIP 5272 (CONICET), UBACyT I023.

Partially supported by PIP 5272 (CONICET), UNLP 11 X472.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giribet, J.I., Maestripieri, A. & Martínez Pería, F. A Geometrical Approach to Indefinite Least Squares Problems. Acta Appl Math 111, 65–81 (2010). https://doi.org/10.1007/s10440-009-9532-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-009-9532-3

Keywords

Mathematics Subject Classification (2000)

Navigation