Skip to main content
Log in

Computation of Topological Indices of Some Graphs

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The Wiener index of G is defined by W(G)=∑{x,y}⊆V d(x,y), where d(x,y) is the length of the shortest path from x to y. The Szeged index of G is defined by Sz(G)=∑e=uvE n u (e|G)n v (e|G), where n u (e|G) (resp. n v (e|G)) is the number of vertices of G closer to u (resp. v) than v (resp. u). The Padmakar–Ivan index of G is defined by PI(G)=∑e=uvE[n eu (e|G)+n ev (e|G)], where n eu (e|G) (resp. n ev (e|G)) is the number of edges of G closer to u (resp. v) than v (resp. u). In this paper we find the above indices for various graphs using the group of automorphisms of G. This is an efficient method of finding these indices especially when the automorphism group of G has a few orbits on V or E. We also find the Wiener indices of a few graphs which frequently arise in mathematical chemistry using inductive methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Darafsheh, M.R.: The Wiener, Szeged and PI index of the triangle graph (submitted for publication)

  2. Deng, H., Chen, S.: PI indices of pericondensed benzenoid graphs. J. Math. Chem. 43(1), 19–25 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dobrynin, A.A., Entringer, R., Gutman, I.: Wiener index of trees: Theory and applications. Acta Appl. Math. 66, 211–249 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dobrynin, A.A., Gutman, I.: Congruence relations for the Szeged index of hexagonal chains. Univ. Beogr. Publ. Elektrotehn. Fak. Ser. Mat. 8, 106–113 (1997)

    MATH  MathSciNet  Google Scholar 

  5. Dobrynin, A.A., Gutman, I., Klavzar, S., Zigert, P.: Wiener index of hexagonal systems. Acta Appl. Math. 72, 247–294 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Entringer, R.C., Jackson, D.E., Snyder, D.A.: Distance in graphs. Czechoslav. Math. J. 26, 283–296 (1976)

    MathSciNet  Google Scholar 

  7. Gutman, I.: A formula for the Wiener number of trees and its extension to graphs containing cycles. Graph Theory Notes, NY 27, 9–15 (1994)

    Google Scholar 

  8. Gutman, I., Dobrynin, A.A.: The Szeged index—a success story. Graph Theory Notes, NY 34, 37–44 (1998)

    MathSciNet  Google Scholar 

  9. Gutman, I., Klavzar, S., Mohr, B. (eds.): Fifty years of the Wiener index. MATCH Commun. Math. Comput. Chem. 35, 1–259 (1997)

    Google Scholar 

  10. Gutman, I., Yeh, Y.N., Lee, S.L., Chen, J.C.: Wiener numbers of dendrimers. MATCH Commun. Math. Comput. Chem. 30, 103–115 (1994)

    MATH  Google Scholar 

  11. Harary, F.: Graph Theory. Addison Wesley, Reading (1968)

    Google Scholar 

  12. Harary, F.: The automorphism group of a hypercube. J. Univers. Comput. Sci. 6, 136–138 (2000)

    MATH  Google Scholar 

  13. Hosoya, H.: Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 4, 2332–2339 (1971)

    Article  Google Scholar 

  14. Khadikar, P.V.: On a novel structural descriptor PI. Natl. Acad. Sci. Lett. 23, 113–118 (2000)

    MathSciNet  Google Scholar 

  15. Khadikar, P.V., Deshpande, N.V., Kale, P.P., Dobrynin, A.A., Gutman, I.: The Szeged index and an analogy with the Wiener index. J. Chem. Inf. Comput. Sci. 35, 547–550 (1995)

    Google Scholar 

  16. Khadikar, P.V., Karmarkar, S., Agrawal, V.K.: Relationship and relative correction potential of the Wiener, Szeged and PI indexes. Natl. Acad. Sci. Lett. 23, 165–170 (2000)

    MATH  MathSciNet  Google Scholar 

  17. Mansour, T., Schork, M.: The vertex PI index and Szeged index of bridge graphs. Discrete Appl. Math. 157(7), 1600–1606 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Prabhakara Rao, N., Laxmi Prasanna, A.: On the Wiener index of pentachains. Appl. Math. Sci. 2(49), 2443–2457 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Tang, Z., Deng, H.: The (n,n)-graphs with the first three extremal Wiener indices. J. Math. Chem. 43(1), 60–74 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Darafsheh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darafsheh, M.R. Computation of Topological Indices of Some Graphs. Acta Appl Math 110, 1225–1235 (2010). https://doi.org/10.1007/s10440-009-9503-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-009-9503-8

Keywords

Mathematics Subject Classification (2000)

Navigation