Abstract
We establish an efficient compatibility criterion for a system of generalized complete intersection type in terms of certain multi-brackets of differential operators. These multi-brackets generalize the higher Jacobi-Mayer brackets, important in the study of evolutionary equations and the integrability problem. We also calculate Spencer δ-cohomology of generalized complete intersections and evaluate the formal functional dimension of the solutions space. The results are used to establish new integration methods.
This is a preview of subscription content, access via your institution.
References
Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge University Press, Cambridge (1993)
Bruns, W., Vetter, U.: Determinental Rings. Lect. Notes in Math., vol. 1327. Springer, Berlin (1988)
Bryant, R.L., Chern, S.S., Gardner, R.B., Goldschmidt, H.L., Griffiths, P.A.: Exterior Differential Systems. MSRI Publications, vol. 18. Springer, Berlin (1991)
Buchsbaum, D.A., Eisenbud, D.: What annihilates a module?. J. Algebra 47, 231–243 (1977)
Buchsbaum, D.A., Rim, D.S.: A generalized Koszul complex, II. Depth and multiplicity. Trans. Am. Math. Soc. 111, 197–224 (1964)
Burch, L.: On ideals of finite homological dimension in local rings. Proc. Camb. Philos. Soc. 64, 941–948 (1968)
Cartan, E.: Les systèmes différentiels extérieurs et leurs applications géométriques. Actualités Sci. Ind., vol. 994. Hermann, Paris (1945) (French)
Darboux, G.: Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, III Partie. Gauthier-Villars, Paris (1894)
de Azcárraga, J.A., Perelomov, A.M., Pérez Bueno, J.C.: The Schouten-Nijenhuis bracket, cohomology and generalized Poisson structures. J. Phys. A 29(24), 7993–8009 (1996)
Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311(1), 167–183 (1989)
Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Springer, Berlin (1995)
Gelfand, I., Gelfand, S., Retakh, V., Wilson, R.L.: Quasideterminants. Adv. Math. 193(1), 56–141 (2005)
Goldberg, V., Lychagin, V.: On the Blaschke conjecture for 3-webs. J. Geom. Anal. 16(1), 69–115 (2006)
Goldberg, V., Lychagin, V.: Abelian equations and rank problems for planar webs. Russ. Math. (Iz. VUZ) 51(10), 39–75 (2007)
Goldschmidt, H.: Integrability criteria for systems of nonlinear partial differential equations. J. Differ. Geom. 1(3), 269–307 (1967)
Goursat, E.: Lecons sur l’intégration des équations aux dérivées partielles du premier ordere. Hermann, Paris (1891)
Guillemin, V., Sternberg, S.: An algebraic model of transitive differential geometry. Bull. Am. Math. Soc. 70, 16–47 (1964)
Guillemin, V., Quillen, D., Sternberg, S.: The integrability of characteristics. Commun. Pure Appl. Math. 23(1), 39–77 (1970)
Gunter, N.M.: Integration of PDEs of the First Order. ONTI, Leningrad (1934) (Russian)
Heckman, G.J.: Quantum integrability for the Kovalevskaya top. Indag. Math. (N.S.) 9(3), 359–365 (1998)
Hörmander, L.: Linear Partial Differential Operators, 3rd edn. Springer, Berlin (1969)
Hubert, E.: Notes on triangular sets and triangulation-decomposition algorithms: I. Polynomial systems; II. Differential systems. In: Symbolic and Numerical Scientific Computation (Hagenberg, 2001). Lecture Notes in Comput. Sci., vol. 2630, pp. 1–39, 40–87. Springer, Berlin (2003)
Janet, M.: Leçons sur les systèms d’équations. Gauthier-Villers, Paris (1929)
Krasilschik, I.S., Lychagin, V.V., Vinogradov, A.M.: Geometry of Jet Spaces and Differential Equations. Gordon and Breach, New York (1986)
Kruglikov, B.S.: Note on two compatibility criteria: Jacobi-Mayer bracket vs. differential Gröbner basis. Lobachevskii J. Math. 23, 57–70 (2006)
Kruglikov, B.S.: Invariant characterization of Liouville metrics and polynomial integrals. J. Geom. Phys. 58(8), 979–995 (2008)
Kruglikov, B.S.: Anomaly of linearization and auxiliary integrals. In: SPT 2007—Symmetry and Perturbation Theory, pp. 108–115. World Scientific, Singapore (2008)
Kruglikov, B.S., Lychagin, V.V.: Mayer brackets and solvability of PDEs—I. Differ. Geom. Appl. 17, 251–272 (2002)
Kruglikov, B.S., Lychagin, V.V.: A compatibility criterion for systems of PDEs and generalized Lagrange-Charpit method. A.I.P. Conference Proceedings, Global Analysis and Applied Mathematics International Workshop on Global Analysis, vol. 729, no. 1, pp. 39–53 (2004)
Kruglikov, B.S., Lychagin, V.V.: Mayer brackets and solvability of PDEs—II. Trans. Am. Math. Soc. 358(3), 1077–1103 (2005)
Kruglikov, B.S., Lychagin, V.V.: Multi-brackets of differential operators and compatibility of PDE systems. C. R. Math. 342(8), 557–561 (2006)
Kruglikov, B.S., Lychagin, V.V.: Dimension of the solutions space of PDEs. In: J. Calmet, W. Seiler, R. Tucker (eds.) Global Integrability of Field Theories, Proc. of GIFT-2006, pp. 5–25 (2006). ArXive e-print: math.DG/0610789
Kruglikov, B.S., Lychagin, V.V.: Compatibility, multi-brackets and integrability of systems of PDEs. Prepr. Univ. Tromsø 2006-49. ArXive:math.DG/0610930
Lada, T., Stasheff, J.: Introduction to SH Lie algebras for physicists. Int. J. Theor. Phys. 32(7), 1087–1103 (1993)
Lie, S.: Gesammelte Abhandlungen, Bd. 1–4. Teubner, Leipzig (1929)
Lie, S., Engel, F.: Theorie der Transformationsgruppen. Begründungstransformationen, vol. II. Teubner, Leipzig (1888–1893)
Lychagin, V.V.: Homogeneous geometric structures and homogeneous differential equations. In: V. Lychagin (ed.) The Interplay between Differential Geometry and Differential Equations, Am. Math. Soc. Transl., ser. 2, vol. 167, pp. 143–164 (1995)
Lychagin, V.V.: Quantum mechanics on manifolds. Acta Appl. Math. 56(2–3), 231–251 (1999)
Malgrange, B.: Equations differentielles sans solutions (d’apres Lars Hormander). In: Sem. Bourbaki. Exp. No. 213, vol. 6, pp. 119–125. Soc. Math. France, Paris (1995)
Mansfield, E.L.: A simple criterion for involutivity. J. Lond. Math. Soc. 54(2), 323–345 (1996)
Matveev, V.S., Topalov, P.J.: Quantum integrability for the Beltrami-Laplace operator as geodesic equivalence. Math. Z. 238, 833–866 (2001)
Michor, P.W., Vinogradov, A.M.: n-ary Lie and associative algebras. In: Geometrical Structures for Physical Theories, II (Vietri, 1996). Rend. Sem. Mat. Univ. Politec. Torino 54(4), pp. 373–392 (1996)
Moyal, J.: Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 45, 99–124 (1945)
Nambu, Y.: Generalized Hamiltonian dynamics. Phys. Rev. D 7, 2405–2412 (1973)
Palais, R.: Seminar on the Atiyah-Singer Index Theorem. Annals of Mathematics Studies, vol. 57. Princeton Univ. Press, Princeton (1965)
Perelomov, A.M.: Integrable Systems of Classical Mechanics and Lie Algebras, vol. 1. Birkhäuser, Basel (1990) (transl. from Russian)
Spencer, D.C.: Overdetermined systems of linear partial differential equations. Bull. Am. Math. Soc. 75, 179–239 (1969)
Sternberg, S.: Lectures on Differential Geometry. Prentice-Hall, Englewood Cliffs (1964)
Sweeney, W.J.: The δ-Poincaré estimate. Pac. J. Math. 20, 559–570 (1967)
Verbovetsky, A.: On the cohomology of compatibility complex. Usp. Mat. Nauk 53(1) (1998) (319) 213–214; transl. Russ. Math. Surv. 53(1) (1998) 225–226
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kruglikov, B., Lychagin, V. Compatibility, Multi-brackets and Integrability of Systems of PDEs. Acta Appl Math 109, 151–196 (2010). https://doi.org/10.1007/s10440-009-9446-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10440-009-9446-0
Keywords
- Multi-brackets
- Jacobi-Mayer bracket
- Spencer cohomology
- Koszul homology
- Buchsbaum-Rim complex
- Integral
- Characteristics
- System of PDEs
- Symbols
- Compatibility
Mathematics Subject Classification (2000)
- 35N10
- 58A20
- 58H10
- 35A30