Acta Applicandae Mathematicae

, 108:529 | Cite as

Three-Way Tiling Sets in Two Dimensions

  • David R. Larson
  • Peter MassopustEmail author
  • Gestur Ólafsson


In this article we show that there exist measurable sets W⊂ℝ2 with finite measure that tile ℝ2 in a measurable way under the action of a expansive matrix A, an affine Weyl group \(\widetilde{W}\) , and a full rank lattice \(\widetilde{\varGamma}\subset\mathbb{R}^{2}\) . This note is follow-up research to the earlier article “Coxeter groups and wavelet sets” by the first and second authors, and is also relevant to the earlier article “Coxeter groups, wavelets, multiresolution and sampling” by M. Dobrescu and the third author. After writing these two articles, the three authors participated in a workshop at the Banff Center on “Operator methods in fractal analysis, wavelets and dynamical systems,” December 2–7, 2006, organized by O. Bratteli, P. Jorgensen, D. Kribs, G. Ólafsson, and S. Silvestrov, and discussed the interrelationships and differences between the articles, and worked on two open problems posed in the Larson-Massopust article. We solved part of Problem 2, including a surprising positive solution to a conjecture that was raised, and we present our results in this article.


Affine Weyl groups Tilings Wavelet sets 

Mathematics Subject Classification (2000)

20F55 28A80 42C40 51F15 46E25 65T60 


  1. 1.
    Bourbaki, N.: Lie Groups and Lie Algebras. Springer, Berlin (2002), Chaps. 4–6 zbMATHGoogle Scholar
  2. 2.
    Coxeter, H.S.M.: Regular Polytopes, 3rd edn. Dover, New York (1973) Google Scholar
  3. 3.
    Dai, X., Larson, D.: Wandering Vectors for Unitary Systems and Orthogonal Wavelets. Memoirs of the AMS, No. 640, vol. 134. AMS, Providence (1998) Google Scholar
  4. 4.
    Dai, X., Larson, D.R., Speegle, D.M.: Wavelet sets in ℝn. J. Fourier Anal. Appl. 3, 451–456 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dai, X., Larson, D.R., Speegle, D.M.: Wavelet sets in ℝn. II. In: Wavelets, Multiwavelets, and Their Applications, San Diego, CA, 1997. Contemp. Math., vol. 216, pp. 15–40. Am. Math. Soc., Providence (1998) Google Scholar
  6. 6.
    Dobrescu, M., Ólafsson, G.: Wavelet sets without groups. Contemp. Math. 405, 27–39 (2006) Google Scholar
  7. 7.
    Dobrescu, M., Ólafsson, G.: Coxeter groups, wavelets, multiresolution and sampling. Contemp. Math. 451, 119–135 (2008) Google Scholar
  8. 8.
    Drechsler, F.: Wavelet-Mengen und Spiegelungsgruppen. Diploma Thesis, Center of Mathematics, Technische Universität München, Germany (2007) Google Scholar
  9. 9.
    Fuglede, B.: Commuting self-adjoint partial differential operators and a group-theoretic problem. J. Funct. Anal. 6, 101–121 (1974) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Grove, L.C., Benson, C.T.: Finite Reflection Groups, 2nd edn. Springer, New York (1985) zbMATHGoogle Scholar
  11. 11.
    Gunnells, P.: Cells in Coxeter groups. In: Notices of the AMS, vol. 53(5), pp. 528–535. AMS, Providence (2006) Google Scholar
  12. 12.
    Humphreys, J.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990) zbMATHGoogle Scholar
  13. 13.
    Hoffman, M., Withers, W.D.: Generalized Chebyshev polynomials associated with affine Weyl groups. Trans. Am. Math. Soc. 308(1), 91–104 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Iosevich, A., Katz, N.H., Tao, T.: Convex bodies with a point of curvature do not have Fourier bases. Am. J. Math. 123, 115–120 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Jorgensen, P.E.T., Pedersen, S.: Orthogonal harmonic analysis of fractal measures. Electron. Res. Announc. Am. Math. Soc. 4, 35–42 (1998) (electronic) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Kolountzakis, M.N., Matolcsi, M.: Tiles with no spectra. Forum Math. 18, 519–528 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lagarias, J.C., Wang, Y.: Spectral sets and factorizations of finite abelian groups. J. Funct. Anal. 145, 73–98 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Larson, D.R., Massopust, P.: Coxeter groups and wavelet sets. Contemp. Math. 451, 187–218 (2008) MathSciNetGoogle Scholar
  19. 19.
    Ólafsson, G., Speegle, D.: Wavelets, wavelet sets, and linear actions on ℝn. In: Wavelets, frames and operator theory. Contemp. Math., vol. 345, pp. 253–281. Am. Math. Soc., Providence (2004) Google Scholar
  20. 20.
    Tao, T.: Fuglede’s conjecture is false in 5 and higher dimensions. Math. Res. Lett. 11, 251–258 (2004) zbMATHMathSciNetGoogle Scholar
  21. 21.
    Wang, Y.: Wavelets, tiling, and spectral sets. Duke Math. J. 114, 43–57 (2002) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • David R. Larson
    • 1
  • Peter Massopust
    • 2
    Email author
  • Gestur Ólafsson
    • 3
  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA
  2. 2.Helmholtz Zentrum München—National Research Center for Environmental Health, Institute of Biomathematics and Biometry, and Centre of Mathematics M6Technische Universität MünchenMünchenGermany
  3. 3.Department of MathematicsLouisiana State UniversityBaton RougeUSA

Personalised recommendations