Skip to main content
Log in

Admissible Transformations and Normalized Classes of Nonlinear Schrödinger Equations

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

The theory of group classification of differential equations is analyzed, substantially extended and enhanced based on the new notions of conditional equivalence group and normalized class of differential equations. Effective new techniques are proposed. Using these, we exhaustively describe admissible point transformations in classes of nonlinear (1+1)-dimensional Schrödinger equations, in particular, in the class of nonlinear (1+1)-dimensional Schrödinger equations with modular nonlinearities and potentials and some subclasses thereof. We then carry out a complete group classification in this class, representing it as a union of disjoint normalized subclasses and applying a combination of algebraic and compatibility methods. Moreover, we introduce the complete classification of (1+2)-dimensional cubic Schrödinger equations with potentials. The proposed approach can be applied to studying symmetry properties of a wide range of differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramenko, A.A., Lagno, V.I., Samoilenko, A.M.: Group classification of nonlinear evolution equations. II. Invariance under solvable local transformation groups. Differ. Equ. 38, 502–509 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Akhatov, I.Sh., Gazizov, R.K., Ibragimov, N.Kh.: Nonlocal symmetries. A heuristic approach. Itogi Nauki Teh. 34, 3–83 (1989) (in Russian, translated in J. Sov. Math. 55, 1401–1450 (1991))

    MATH  MathSciNet  Google Scholar 

  3. Anderson, I.M., Fels, M.E., Torre, C.G.: Group invariant solutions without transversality. Commun. Math. Phys. 212, 653–686 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Basarab-Horwath, P., Lahno, V., Zhdanov, R.: The structure of Lie algebras and the classification problem for partial differential equations. Acta Appl. Math. 69, 43–94 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baumann, G., Nonnenmacher, T.F.: Lie transformations, similarity reduction, and solutions for the nonlinear Madelung fluid equations with external potential. J. Math. Phys. 28, 1250–1260 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Białynicki-Birula, I., Mycielski, J.: Wave equations with logarithmic nonlinearities. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 23, 461–466 (1975)

    Google Scholar 

  7. Białynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100, 62–93 (1976)

    Article  Google Scholar 

  8. Białynicki-Birula, I., Mycielski, J.: Gaussons: solitons of the logarithmic Schrödinger equation. Phys. Scr. 20, 539–544 (1978)

    Article  Google Scholar 

  9. Białynicki-Birula, I., Sowiński, T.: Solutions of the logarithmic Schrödinger equation in a rotating harmonic trap. Nonlinear waves: classical and quantum aspects. NATO Sci. Ser. II Math. Phys. Chem., vol. 153, pp. 99–106. Kluwer Academic, Dordrecht (2004). arXiv:quant-ph/0310195

    Google Scholar 

  10. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)

    MATH  Google Scholar 

  11. Borovskikh, A.V.: Group classification of the eikonal equations for a three-dimensional nonhomogeneous medium. Mat. Sb. 195(4), 23–64 (2004) (in Russian); translation in Sb. Math. 195(3–4), 479–520 (2004)

    MathSciNet  Google Scholar 

  12. Borovskikh, A.V.: The two-dimensional eikonal equation. Sib. Mat. Zh. 47, 993–1018 (2006)

    MATH  MathSciNet  Google Scholar 

  13. Boyer, C.P., Sharp, R.T., Winternitz, P.: Symmetry breaking interactions for the time dependent Schrödinger equation. J. Math. Phys. 17, 1439–1451 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  14. Broadbridge, P., Godfrey, S.E.: Integrable heterogeneous nonlinear Schrödinger equations with dielectric loss: Lie–Bäcklund symmetries. J. Math. Phys. 32, 8–18 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Carles, R.: Critical nonlinear Schrödinger equations with and without harmonic potential. Math. Models Methods Appl. Sci. 12, 1513–1523 (2002). arXiv:cond-mat/0112414

    Article  MATH  MathSciNet  Google Scholar 

  16. Clarkson, P.A.: Dimensional reductions and exact solutions of a generalized nonlinear Schrödinger equation. Nonlinearity 5, 453–472 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Doebner, H.-D., Goldin, G.A.: Properties of nonlinear Schrödinger equations associated with diffeomorphism group representations. J. Phys. A 27, 1771–1780 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Doebner, H.-D., Goldin, G.A., Nattermann, P.: Gauge transformations in quantum mechanics and the unification of nonlinear Schrödinger equations. J. Math. Phys. 40, 49–63 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fushchych, W.I.: Conditional symmetry of equations of nonlinear mathematical physics. Ukr. Mat. Zh. 43, 1456–1470 (1991) (in Russian); translation in Ukr. Math. J. 43, 1350–1364 (1991)

    Google Scholar 

  20. Fushchych, W.I., Cherniha, R.M.: Galilei-invariant nonlinear systems of evolution equations. J. Phys. A 28, 5569–5579 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fushchich, W.I., Chopik, V.I.: Conditional invariance of a nonlinear Schrödinger equation. Dokl. Akad. Nauk Ukr. SSR Ser. A 4, 30–33 (1990) (in Russian)

    MathSciNet  Google Scholar 

  22. Fushchich, W.I., Chopyk, V.I.: Symmetry and non-Lie reduction of the nonlinear Schrödinger equation. Ukr. Mat. Zh. 45, 539–551 (1993) (in Ukrainian); translation in Ukr. Math. J. 45, 581–597 (1993)

    Google Scholar 

  23. Fushchych, W., Chopyk, V., Nattermann, P., Scherer, W.: Symmetries and reductions of nonlinear Schrödinger equations of Doebner–Goldin type. Rep. Math. Phys. 35, 129–138 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Fushchych, W.I., Moskaliuk, S.S.: On some exact solutions of the nonlinear Schrödinger equations in three spatial dimensions. Lett. Nuovo Cimento 31, 571–576 (1981)

    Article  MathSciNet  Google Scholar 

  25. Gagnon, L., Winternitz, P.: Lie symmetries of a generalised non-linear Schrödinger equation, I: the symmetry group and its subgroups. J. Phys. A 21, 1493–1511 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gagnon, L., Winternitz, P.: Lie symmetries of a generalised non-linear Schrödinger equation, II: exact solutions. J. Phys. A 22, 469–497 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gagnon, L., Winternitz, P.: Lie symmetries of a generalised non-linear Schrödinger equation, III: reductions to third-order ordinary differential equations. J. Phys. A 22, 499–509 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gagnon, L., Winternitz, P.: Exact solutions of the cubic and quintic non-linear Schrödinger equation for a cylindrical geometry. Phys. Rev. A 39, 296–306 (1989)

    Article  MathSciNet  Google Scholar 

  29. Gagnon, L., Winternitz, P.: Symmetry classes of variable coefficient nonlinear Schrödinger equations. J. Phys. A 26, 7061–7076 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ibragimov, N.H. (ed.): Lie Group Analysis of Differential Equations—Symmetries, Exact Solutions and Conservation Laws, vols. 1, 2. CRC Press, Boca Raton (1994)

    Google Scholar 

  31. Ibragimov, N.H., Torrisi, M., Valenti, A.: Preliminary group classification of equations v tt =f(x,v x )v xx +g(x,v x ). J. Math. Phys. 32, 2988–2995 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ivanova, N.: Symmetry of nonlinear Schrödinger equations with harmonic oscillator type potential. Proc. Inst. Math. NAS Ukr. Part 1 43, 149–150 (2002)

    MathSciNet  Google Scholar 

  33. Ivanova, N.M., Popovych, R.O., Eshraghi, H.: On symmetry properties of nonlinear Schrödinger equations. Sveske Fiz. Nauka 18(A1), 451–456 (2005)

    Google Scholar 

  34. Ivanova, N.M., Popovych, R.O., Sophocleous, C.: Conservation laws of variable coefficient diffusion–convection equations. In: Proceedings of 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, pp. 107–113 (2004)

  35. Kavian, O., Weissler, F.B.: Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation. Mich. Math. J. 41, 151–173 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kingston, J.G., Sophocleous, C.: On point transformations of a generalised Burgers equation. Phys. Lett. A 155, 15–19 (1991)

    Article  MathSciNet  Google Scholar 

  37. Kingston, J.G., Sophocleous, C.: On form-preserving point transformations of partial differential equations. J. Phys. A 31, 1597–1619 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Kingston, J.G., Sophocleous, C.: Symmetries and form-preserving transformations of one-dimensional wave equations with dissipation. Int. J. Non-Linear Mech. 36, 987–997 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kunzinger, M., Popovych, R.: Normalized classes of multi-dimensional nonlinear Schrödinger equations (in preparation)

  40. Lagno, V.I., Samoilenko, A.M.: Group classification of nonlinear evolution equations, I: invariance under semisimple local transformation groups. Differ. Equ. 38, 384–391 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  41. Lahno, V.I., Spichak, S.V.: Group classification of quasi-linear elliptic type equations, I: invariance under Lie algebras with nontrivial Levi decomposition. Ukr. Math. J. 59, 1532–1545 (2007)

    Article  Google Scholar 

  42. Lahno, V., Zhdanov, R.: Group classification of the general second-order evolution equation: semi-simple invariance groups. J. Phys. A 40, 5083–5103 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Lahno, V., Zhdanov, R., Magda, O.: Group classification and exact solutions of nonlinear wave equations. Acta Appl. Math. 91, 253–313 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  44. Lie, S.: Über die Integration durch bestimmte Integrale von einer Klasse linear partieller Differentialgleichung. Arch. Math. 6(3), 328–368 (1881). Translation by N.H. Ibragimov: S. Lie, On integration of a class of linear partial differential equations by means of definite integrals. In: CRC Handbook of Lie Group Analysis of Differential Equations, vol. 2, pp. 473–508 (1994)

    Google Scholar 

  45. Lie, S.: Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen. Teubner, Leipzig (1891)

    MATH  Google Scholar 

  46. Lisle, I.G.: Equivalence transformations for classes of differential equations. PhD thesis, University of British Columbia (1992)

  47. Meleshko, S.V.: Group classification of equations of two-dimensional gas motions. Prikl. Mat. Mekh. 58, 56–62 (1994) (in Russian): translation in J. Appl. Math. Mech. 58, 629–635 (1994)

    MathSciNet  Google Scholar 

  48. Miller, W.: Symmetry and Separation of Variables. Addison-Wesley, Reading (1977)

    MATH  Google Scholar 

  49. Nattermann, P., Doebner, H.-D.: Gauge classification. Lie symmetries and integrability of a family of nonlinear Schrödinger equations. J. Nonlinear Math. Phys. 3(3–4), 302–310 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  50. Niederer, U.: The maximal kinematical invariance group of the free Schrödinger equation. Helv. Phys. Acta 45, 802–810 (1972)

    MathSciNet  Google Scholar 

  51. Niederer, U.: The maximal kinematical invariance group of the harmonic oscillator. Helv. Phys. Acta 46, 191–200 (1973)

    Google Scholar 

  52. Nikitin, A.G., Popovych, R.O.: Group classification of nonlinear Schrödinger equations. Ukr. Mat. Zh. 53, 1053–1060 (2001) (in Ukrainian); translation in Ukr. Math. J. 53, 1255–1265 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  53. Olver, P.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    MATH  Google Scholar 

  54. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  55. Polyanin, A.D., Zaitsev, V.F.: Handbook of Nonlinear Partial Differential Equations. Chapman & Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

  56. Popovych, R.O.: Normalized classes of nonlinear Schrödinger equations. Bulg. J. Phys. 33(s2), 211–222 (2006)

    MATH  Google Scholar 

  57. Popovych, R.O.: Equivalence of Q-conditional symmetries under group of local transformation. In: Proceedings of the Third International Conference “Symmetry in Nonlinear Mathematical Physics”. Proceedings of Institute of Mathematics (Kyiv), vol. 30, part 1, pp. 184–189 (2000). arXiv:math-ph/0208005

  58. Popovych, R.O.: Classification of admissible transformations of differential equations. In: Collection of Works of Institute of Mathematics (Kyiv), vol. 2, no. 2, pp. 239–254 (2006)

  59. Popovych, R.O., Eshraghi, H.: Admissible point transformations of nonlinear Schrödinger equations. In: Proceedings of 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, pp. 167–174 (2004)

  60. Popovych, R.O., Ivanova, N.M.: New results on group classification of nonlinear diffusion–convection equations. J. Phys. A 37, 7547–7565 (2004). arXiv:math-ph/0306035

    Article  MATH  MathSciNet  Google Scholar 

  61. Popovych, R.O., Ivanova, N.M.: Hierarchy of conservation laws of diffusion–convection equations. J. Math. Phys. 46, 043502 (2005). arXiv:math-ph/0407008

    Article  MathSciNet  Google Scholar 

  62. Popovych, R.O., Ivanova, N.M.: Potential equivalence transformations for nonlinear diffusion–convection equations. J. Phys. A 38, 3145–3155 (2005), arXiv:math-ph/0402066

    Article  MATH  MathSciNet  Google Scholar 

  63. Popovych, R.O., Ivanova, N.M., Eshraghi, H.: Lie symmetries of (1+1)-dimensional cubic Schrödinger equation with potential. In: Proceedings of Institute of Mathematics of NAS of Ukraine, vol. 50, part 1, pp. 219–224 (2004). math-ph/0310039

  64. Popovych, R.O., Ivanova, N.M., Eshraghi, H.: Group classification of (1+1)-dimensional Schrödinger equations with potentials and power nonlinearities. J. Math. Phys. 45, 3049–3057 (2004). arXiv:math-ph/0311039

    Article  MATH  MathSciNet  Google Scholar 

  65. Popovych, R.O., Kunzinger, M., Ivanova, N.M.: Conservation laws and potential symmetries of linear parabolic equations. Acta Appl. Math. 100, 113–185 (2008). arXiv:0706.0443

    Article  MATH  MathSciNet  Google Scholar 

  66. Popovych, R.O., Vaneeva, O.O., Ivanova, N.M.: Potential nonclassical symmetries and solutions of fast diffusion equation. Phys. Lett. A 362, 166–173 (2007). arXiv:math-ph/0506067

    Article  MathSciNet  Google Scholar 

  67. Prokhorova, M.: The structure of the category of parabolic equations. arXiv:math.AP/0512094 (2005)

  68. Sakhnovich, A.: Exact solutions of nonlinear equations and the method of operator identities. Linear Algebra Appl. 182, 109–126 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  69. Sakhnovich, A.: On a new integrable nonlinear Schrödinger equation with a simple external potential and its explicit solutions. arXiv:nlin.SI/0610046

  70. Sakhnovich, A.: Nonisospectral integrable nonlinear equations with external potentials and their GBDT solutions. J. Phys. A: Math. Theor. 41, 155204 (2008). arXiv:0710.2260

    Article  MathSciNet  Google Scholar 

  71. Sciarrino, A., Winternitz, P.: Symmetries and solutions of the vector nonlinear Schrödinger equation. Nuovo Cimento Soc. Ital. Fis. B (12) 112, 853–871 (1997)

    MathSciNet  Google Scholar 

  72. Stoimenov, S., Henkel, M.: Dynamical symmetries of semi-linear Schrödinger and diffusion equations. Nuclear Phys. B 723(3), 205–233 (2005). arXiv:math-ph/0504028

    Article  MATH  MathSciNet  Google Scholar 

  73. Vaneeva, O.O., Johnpillai, A.G., Popovych, R.O., Sophocleous, C.: Enhanced group analysis and conservation laws of variable coefficient reaction-diffusion equations with power nonlinearities. J. Math. Anal. Appl. 330, 1363–1386 (2007). arXiv:math-ph/0605081

    Article  MATH  MathSciNet  Google Scholar 

  74. Vaneeva, O.O., Popovych, R.O., Sophocleous, C.: Enhanced group analysis of variable coefficient semilinear diffusion equations with a power source. Acta Appl. Math. (to appear). arXiv:0708.3457

  75. Wittkopf, A.D.: Algorithms and implementations for differential elimination. PhD thesis, Simon Fraser University (2004)

  76. Wittkopf, A.D., Reid, G.J.: Fast differential elimination algorithms. Technical Report TR-00-06, Ontario Research Centre for Computer Algebra (2000)

  77. Wittkopf, A.D., Reid, G.J.: Fast differential elimination in C: the CDiffElim environment. Comput. Phys. Commun. 139, 192–217 (2001)

    Article  MATH  Google Scholar 

  78. Zhdanov, R.Z., Lahno, V.I.: Group classification of heat conductivity equations with a nonlinear source. J. Phys. A 32, 7405–7418 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  79. Zhdanov, R., Roman, O.: On preliminary symmetry classification of nonlinear Schrödinger equation with some applications of Doebner–Goldin models. Rep. Math. Phys. 45(2), 273–291 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman O. Popovych.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popovych, R.O., Kunzinger, M. & Eshraghi, H. Admissible Transformations and Normalized Classes of Nonlinear Schrödinger Equations. Acta Appl Math 109, 315–359 (2010). https://doi.org/10.1007/s10440-008-9321-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-008-9321-4

Keywords

Navigation