Abstract
The theory of group classification of differential equations is analyzed, substantially extended and enhanced based on the new notions of conditional equivalence group and normalized class of differential equations. Effective new techniques are proposed. Using these, we exhaustively describe admissible point transformations in classes of nonlinear (1+1)-dimensional Schrödinger equations, in particular, in the class of nonlinear (1+1)-dimensional Schrödinger equations with modular nonlinearities and potentials and some subclasses thereof. We then carry out a complete group classification in this class, representing it as a union of disjoint normalized subclasses and applying a combination of algebraic and compatibility methods. Moreover, we introduce the complete classification of (1+2)-dimensional cubic Schrödinger equations with potentials. The proposed approach can be applied to studying symmetry properties of a wide range of differential equations.
Similar content being viewed by others
References
Abramenko, A.A., Lagno, V.I., Samoilenko, A.M.: Group classification of nonlinear evolution equations. II. Invariance under solvable local transformation groups. Differ. Equ. 38, 502–509 (2002)
Akhatov, I.Sh., Gazizov, R.K., Ibragimov, N.Kh.: Nonlocal symmetries. A heuristic approach. Itogi Nauki Teh. 34, 3–83 (1989) (in Russian, translated in J. Sov. Math. 55, 1401–1450 (1991))
Anderson, I.M., Fels, M.E., Torre, C.G.: Group invariant solutions without transversality. Commun. Math. Phys. 212, 653–686 (2000)
Basarab-Horwath, P., Lahno, V., Zhdanov, R.: The structure of Lie algebras and the classification problem for partial differential equations. Acta Appl. Math. 69, 43–94 (2001)
Baumann, G., Nonnenmacher, T.F.: Lie transformations, similarity reduction, and solutions for the nonlinear Madelung fluid equations with external potential. J. Math. Phys. 28, 1250–1260 (1987)
Białynicki-Birula, I., Mycielski, J.: Wave equations with logarithmic nonlinearities. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 23, 461–466 (1975)
Białynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100, 62–93 (1976)
Białynicki-Birula, I., Mycielski, J.: Gaussons: solitons of the logarithmic Schrödinger equation. Phys. Scr. 20, 539–544 (1978)
Białynicki-Birula, I., Sowiński, T.: Solutions of the logarithmic Schrödinger equation in a rotating harmonic trap. Nonlinear waves: classical and quantum aspects. NATO Sci. Ser. II Math. Phys. Chem., vol. 153, pp. 99–106. Kluwer Academic, Dordrecht (2004). arXiv:quant-ph/0310195
Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)
Borovskikh, A.V.: Group classification of the eikonal equations for a three-dimensional nonhomogeneous medium. Mat. Sb. 195(4), 23–64 (2004) (in Russian); translation in Sb. Math. 195(3–4), 479–520 (2004)
Borovskikh, A.V.: The two-dimensional eikonal equation. Sib. Mat. Zh. 47, 993–1018 (2006)
Boyer, C.P., Sharp, R.T., Winternitz, P.: Symmetry breaking interactions for the time dependent Schrödinger equation. J. Math. Phys. 17, 1439–1451 (1976)
Broadbridge, P., Godfrey, S.E.: Integrable heterogeneous nonlinear Schrödinger equations with dielectric loss: Lie–Bäcklund symmetries. J. Math. Phys. 32, 8–18 (1991)
Carles, R.: Critical nonlinear Schrödinger equations with and without harmonic potential. Math. Models Methods Appl. Sci. 12, 1513–1523 (2002). arXiv:cond-mat/0112414
Clarkson, P.A.: Dimensional reductions and exact solutions of a generalized nonlinear Schrödinger equation. Nonlinearity 5, 453–472 (1992)
Doebner, H.-D., Goldin, G.A.: Properties of nonlinear Schrödinger equations associated with diffeomorphism group representations. J. Phys. A 27, 1771–1780 (1994)
Doebner, H.-D., Goldin, G.A., Nattermann, P.: Gauge transformations in quantum mechanics and the unification of nonlinear Schrödinger equations. J. Math. Phys. 40, 49–63 (1999)
Fushchych, W.I.: Conditional symmetry of equations of nonlinear mathematical physics. Ukr. Mat. Zh. 43, 1456–1470 (1991) (in Russian); translation in Ukr. Math. J. 43, 1350–1364 (1991)
Fushchych, W.I., Cherniha, R.M.: Galilei-invariant nonlinear systems of evolution equations. J. Phys. A 28, 5569–5579 (1995)
Fushchich, W.I., Chopik, V.I.: Conditional invariance of a nonlinear Schrödinger equation. Dokl. Akad. Nauk Ukr. SSR Ser. A 4, 30–33 (1990) (in Russian)
Fushchich, W.I., Chopyk, V.I.: Symmetry and non-Lie reduction of the nonlinear Schrödinger equation. Ukr. Mat. Zh. 45, 539–551 (1993) (in Ukrainian); translation in Ukr. Math. J. 45, 581–597 (1993)
Fushchych, W., Chopyk, V., Nattermann, P., Scherer, W.: Symmetries and reductions of nonlinear Schrödinger equations of Doebner–Goldin type. Rep. Math. Phys. 35, 129–138 (1995)
Fushchych, W.I., Moskaliuk, S.S.: On some exact solutions of the nonlinear Schrödinger equations in three spatial dimensions. Lett. Nuovo Cimento 31, 571–576 (1981)
Gagnon, L., Winternitz, P.: Lie symmetries of a generalised non-linear Schrödinger equation, I: the symmetry group and its subgroups. J. Phys. A 21, 1493–1511 (1988)
Gagnon, L., Winternitz, P.: Lie symmetries of a generalised non-linear Schrödinger equation, II: exact solutions. J. Phys. A 22, 469–497 (1989)
Gagnon, L., Winternitz, P.: Lie symmetries of a generalised non-linear Schrödinger equation, III: reductions to third-order ordinary differential equations. J. Phys. A 22, 499–509 (1989)
Gagnon, L., Winternitz, P.: Exact solutions of the cubic and quintic non-linear Schrödinger equation for a cylindrical geometry. Phys. Rev. A 39, 296–306 (1989)
Gagnon, L., Winternitz, P.: Symmetry classes of variable coefficient nonlinear Schrödinger equations. J. Phys. A 26, 7061–7076 (1993)
Ibragimov, N.H. (ed.): Lie Group Analysis of Differential Equations—Symmetries, Exact Solutions and Conservation Laws, vols. 1, 2. CRC Press, Boca Raton (1994)
Ibragimov, N.H., Torrisi, M., Valenti, A.: Preliminary group classification of equations v tt =f(x,v x )v xx +g(x,v x ). J. Math. Phys. 32, 2988–2995 (1991)
Ivanova, N.: Symmetry of nonlinear Schrödinger equations with harmonic oscillator type potential. Proc. Inst. Math. NAS Ukr. Part 1 43, 149–150 (2002)
Ivanova, N.M., Popovych, R.O., Eshraghi, H.: On symmetry properties of nonlinear Schrödinger equations. Sveske Fiz. Nauka 18(A1), 451–456 (2005)
Ivanova, N.M., Popovych, R.O., Sophocleous, C.: Conservation laws of variable coefficient diffusion–convection equations. In: Proceedings of 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, pp. 107–113 (2004)
Kavian, O., Weissler, F.B.: Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation. Mich. Math. J. 41, 151–173 (1994)
Kingston, J.G., Sophocleous, C.: On point transformations of a generalised Burgers equation. Phys. Lett. A 155, 15–19 (1991)
Kingston, J.G., Sophocleous, C.: On form-preserving point transformations of partial differential equations. J. Phys. A 31, 1597–1619 (1998)
Kingston, J.G., Sophocleous, C.: Symmetries and form-preserving transformations of one-dimensional wave equations with dissipation. Int. J. Non-Linear Mech. 36, 987–997 (2001)
Kunzinger, M., Popovych, R.: Normalized classes of multi-dimensional nonlinear Schrödinger equations (in preparation)
Lagno, V.I., Samoilenko, A.M.: Group classification of nonlinear evolution equations, I: invariance under semisimple local transformation groups. Differ. Equ. 38, 384–391 (2002)
Lahno, V.I., Spichak, S.V.: Group classification of quasi-linear elliptic type equations, I: invariance under Lie algebras with nontrivial Levi decomposition. Ukr. Math. J. 59, 1532–1545 (2007)
Lahno, V., Zhdanov, R.: Group classification of the general second-order evolution equation: semi-simple invariance groups. J. Phys. A 40, 5083–5103 (2007)
Lahno, V., Zhdanov, R., Magda, O.: Group classification and exact solutions of nonlinear wave equations. Acta Appl. Math. 91, 253–313 (2006)
Lie, S.: Über die Integration durch bestimmte Integrale von einer Klasse linear partieller Differentialgleichung. Arch. Math. 6(3), 328–368 (1881). Translation by N.H. Ibragimov: S. Lie, On integration of a class of linear partial differential equations by means of definite integrals. In: CRC Handbook of Lie Group Analysis of Differential Equations, vol. 2, pp. 473–508 (1994)
Lie, S.: Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen. Teubner, Leipzig (1891)
Lisle, I.G.: Equivalence transformations for classes of differential equations. PhD thesis, University of British Columbia (1992)
Meleshko, S.V.: Group classification of equations of two-dimensional gas motions. Prikl. Mat. Mekh. 58, 56–62 (1994) (in Russian): translation in J. Appl. Math. Mech. 58, 629–635 (1994)
Miller, W.: Symmetry and Separation of Variables. Addison-Wesley, Reading (1977)
Nattermann, P., Doebner, H.-D.: Gauge classification. Lie symmetries and integrability of a family of nonlinear Schrödinger equations. J. Nonlinear Math. Phys. 3(3–4), 302–310 (1996)
Niederer, U.: The maximal kinematical invariance group of the free Schrödinger equation. Helv. Phys. Acta 45, 802–810 (1972)
Niederer, U.: The maximal kinematical invariance group of the harmonic oscillator. Helv. Phys. Acta 46, 191–200 (1973)
Nikitin, A.G., Popovych, R.O.: Group classification of nonlinear Schrödinger equations. Ukr. Mat. Zh. 53, 1053–1060 (2001) (in Ukrainian); translation in Ukr. Math. J. 53, 1255–1265 (2001)
Olver, P.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)
Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)
Polyanin, A.D., Zaitsev, V.F.: Handbook of Nonlinear Partial Differential Equations. Chapman & Hall/CRC, Boca Raton (2004)
Popovych, R.O.: Normalized classes of nonlinear Schrödinger equations. Bulg. J. Phys. 33(s2), 211–222 (2006)
Popovych, R.O.: Equivalence of Q-conditional symmetries under group of local transformation. In: Proceedings of the Third International Conference “Symmetry in Nonlinear Mathematical Physics”. Proceedings of Institute of Mathematics (Kyiv), vol. 30, part 1, pp. 184–189 (2000). arXiv:math-ph/0208005
Popovych, R.O.: Classification of admissible transformations of differential equations. In: Collection of Works of Institute of Mathematics (Kyiv), vol. 2, no. 2, pp. 239–254 (2006)
Popovych, R.O., Eshraghi, H.: Admissible point transformations of nonlinear Schrödinger equations. In: Proceedings of 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, pp. 167–174 (2004)
Popovych, R.O., Ivanova, N.M.: New results on group classification of nonlinear diffusion–convection equations. J. Phys. A 37, 7547–7565 (2004). arXiv:math-ph/0306035
Popovych, R.O., Ivanova, N.M.: Hierarchy of conservation laws of diffusion–convection equations. J. Math. Phys. 46, 043502 (2005). arXiv:math-ph/0407008
Popovych, R.O., Ivanova, N.M.: Potential equivalence transformations for nonlinear diffusion–convection equations. J. Phys. A 38, 3145–3155 (2005), arXiv:math-ph/0402066
Popovych, R.O., Ivanova, N.M., Eshraghi, H.: Lie symmetries of (1+1)-dimensional cubic Schrödinger equation with potential. In: Proceedings of Institute of Mathematics of NAS of Ukraine, vol. 50, part 1, pp. 219–224 (2004). math-ph/0310039
Popovych, R.O., Ivanova, N.M., Eshraghi, H.: Group classification of (1+1)-dimensional Schrödinger equations with potentials and power nonlinearities. J. Math. Phys. 45, 3049–3057 (2004). arXiv:math-ph/0311039
Popovych, R.O., Kunzinger, M., Ivanova, N.M.: Conservation laws and potential symmetries of linear parabolic equations. Acta Appl. Math. 100, 113–185 (2008). arXiv:0706.0443
Popovych, R.O., Vaneeva, O.O., Ivanova, N.M.: Potential nonclassical symmetries and solutions of fast diffusion equation. Phys. Lett. A 362, 166–173 (2007). arXiv:math-ph/0506067
Prokhorova, M.: The structure of the category of parabolic equations. arXiv:math.AP/0512094 (2005)
Sakhnovich, A.: Exact solutions of nonlinear equations and the method of operator identities. Linear Algebra Appl. 182, 109–126 (1993)
Sakhnovich, A.: On a new integrable nonlinear Schrödinger equation with a simple external potential and its explicit solutions. arXiv:nlin.SI/0610046
Sakhnovich, A.: Nonisospectral integrable nonlinear equations with external potentials and their GBDT solutions. J. Phys. A: Math. Theor. 41, 155204 (2008). arXiv:0710.2260
Sciarrino, A., Winternitz, P.: Symmetries and solutions of the vector nonlinear Schrödinger equation. Nuovo Cimento Soc. Ital. Fis. B (12) 112, 853–871 (1997)
Stoimenov, S., Henkel, M.: Dynamical symmetries of semi-linear Schrödinger and diffusion equations. Nuclear Phys. B 723(3), 205–233 (2005). arXiv:math-ph/0504028
Vaneeva, O.O., Johnpillai, A.G., Popovych, R.O., Sophocleous, C.: Enhanced group analysis and conservation laws of variable coefficient reaction-diffusion equations with power nonlinearities. J. Math. Anal. Appl. 330, 1363–1386 (2007). arXiv:math-ph/0605081
Vaneeva, O.O., Popovych, R.O., Sophocleous, C.: Enhanced group analysis of variable coefficient semilinear diffusion equations with a power source. Acta Appl. Math. (to appear). arXiv:0708.3457
Wittkopf, A.D.: Algorithms and implementations for differential elimination. PhD thesis, Simon Fraser University (2004)
Wittkopf, A.D., Reid, G.J.: Fast differential elimination algorithms. Technical Report TR-00-06, Ontario Research Centre for Computer Algebra (2000)
Wittkopf, A.D., Reid, G.J.: Fast differential elimination in C: the CDiffElim environment. Comput. Phys. Commun. 139, 192–217 (2001)
Zhdanov, R.Z., Lahno, V.I.: Group classification of heat conductivity equations with a nonlinear source. J. Phys. A 32, 7405–7418 (1999)
Zhdanov, R., Roman, O.: On preliminary symmetry classification of nonlinear Schrödinger equation with some applications of Doebner–Goldin models. Rep. Math. Phys. 45(2), 273–291 (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Popovych, R.O., Kunzinger, M. & Eshraghi, H. Admissible Transformations and Normalized Classes of Nonlinear Schrödinger Equations. Acta Appl Math 109, 315–359 (2010). https://doi.org/10.1007/s10440-008-9321-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10440-008-9321-4