Skip to main content
Log in

Long-Time Behavior for Second Order Lattice Dynamical Systems

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Many researchers examined the existence of global attractors for various types of first and second order lattice dynamical systems. Here we prove the existence of a global attractor for a new type of second order lattice dynamical systems in the Hilbert space l 2×l 2. For specific choices of the linear operators this system can be regraded as a spatial discretization of a continuous damped nonlinear Boussinesq equation on ℝm,m≥1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdallah, A.Y.: Global attractor for the lattice dynamical system of a nonlinear Boussinesq equation. Abstr. Appl. Anal. 6, 655–671 (2005)

    Article  MathSciNet  Google Scholar 

  2. Abdallah, A.Y.: Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete Contin. Dyn. Syst. B 5, 899–916 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abdallah, A.Y.: Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems. Commun. Pure Appl. Anal. 5, 55–69 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Afraimovich, V.S., Nekorkin, V.I.: Chaos of traveling waves in a discrete chain of diffusively coupled maps. Int. J. Bifurc. Chaos 4, 631–637 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bates, P.W., Chen, X., Chmaj, A.: Traveling waves of bistable dynamics of a lattice. SIAM J. Math. Anal. 35, 520–546 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bates, P.W., Lu, K., Wang, B.: Attractors for lattice dynamical systems. Int. J. Bifurc. Chaos 11, 143–153 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bell, J.: Some threshold results for models of myelinated nerves. Math. Biosci. 54, 181–190 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bell, J., Cosner, C.: Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons. Q. Appl. Math. 42, 1–14 (1984)

    MATH  MathSciNet  Google Scholar 

  9. Boussinesq, J.: Théorie des ondes et de remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement parielles de la surface au fond. J. Math. Pures Appl. Ser. 2 17, 55–108 (1872)

    Google Scholar 

  10. Carrol, T.L., Pecora, L.M.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    Article  MathSciNet  Google Scholar 

  11. Chate, H., Courbage, M. (eds.): Lattice Systems. Physica D 103(1–4), 1–612 (1997)

    MathSciNet  Google Scholar 

  12. Chow, S.N., Mallet-Paret, J.: Pattern formation and spatial chaos in lattice dynamical systems I. IEEE Trans. Circuits Syst. 42, 746–751 (1995)

    Article  MathSciNet  Google Scholar 

  13. Chow, S.N., Mallet-Paret, J., Shen, W.: Traveling waves in lattice dynamical systems. J. Differ. Equ. 149, 248–291 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chow, S.N., Mallet-Paret, J., Van Vleck, E.S.: Pattern formation and spatial chaos in spatially discrete evolution equations. Rand. Comput. Dyn. 4, 109–178 (1996)

    MATH  Google Scholar 

  15. Chua, L.O., Roska, T.: The CNN paradigm. IEEE Trans. Circuits Syst. 40, 147–156 (1993)

    MATH  MathSciNet  Google Scholar 

  16. Chua, L.O., Yang, Y.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chua, L.O., Yang, Y.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35, 1273–1290 (1988)

    Article  MathSciNet  Google Scholar 

  18. Erneux, T., Nicolis, G.: Propagating waves in discrete bistable reaction diffusion systems. Physica D 67, 237–244 (1993)

    MATH  MathSciNet  Google Scholar 

  19. Kapral, R.: Discrete models for chemically reacting systems. J. Math. Chem. 6, 113–163 (1991)

    Article  MathSciNet  Google Scholar 

  20. Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Keener, J.P.: The effects of discrete gap junction coupling on propagation in myocardium. J. Theor. Biol. 148, 49–82 (1991)

    Article  Google Scholar 

  22. Mallet-Paret, J., Chow, S.N.: Pattern formation and spatial chaos in lattice dynamical systems II. IEEE Trans. Circuits Syst. 42, 752–756 (1995)

    Article  MathSciNet  Google Scholar 

  23. Sell, G.R., You, Y.: Dynamics of Evolutionary Equations. Applied Mathematical Sciences, vol. 143. Springer, New York (2002)

    MATH  Google Scholar 

  24. Temam, R.: Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Applied Mathematical Sciences, vol. 68. Springer, New York (1997)

    MATH  Google Scholar 

  25. You, Y.: Global dynamics of 2D Boussinesq equations. Nonlinear Anal. 30, 4643–4654 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhou, S.: Attractors for second order lattice dynamical systems. J. Differ. Equ. 179, 605–624 (2002)

    Article  MATH  Google Scholar 

  27. Zhou, S.: Attractors for first order dissipative lattice dynamical systems. Physica D 178, 51–61 (2003)

    MATH  MathSciNet  Google Scholar 

  28. Zhou, S.: Attractors and approximations for lattice dynamical systems. J. Differ. Equ. 200, 342–368 (2004)

    Article  MATH  Google Scholar 

  29. Zinner, B.: Existence of traveling wavefront solutions for the discrete Nagumo equation. J. Differ. Equ. 96, 1–27 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Y. Abdallah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdallah, A.Y. Long-Time Behavior for Second Order Lattice Dynamical Systems. Acta Appl Math 106, 47–59 (2009). https://doi.org/10.1007/s10440-008-9281-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-008-9281-8

Keywords

Mathematics Subject Classification (2000)

Navigation