Skip to main content
Log in

Mixed Measures of Convex Cylinders and Quermass Densities of Boolean Models

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Translative integral formulas for curvature measures of convex bodies were obtained by Schneider and Weil by introducing mixed measures of convex bodies. These results can be extended to arbitrary closed convex sets since mixed measures are locally defined. Furthermore, iterated versions of these formulas due to Weil were used by Fallert to introduce quermass densities for (non-stationary and non-isotropic) Poisson processes of convex bodies and respective Boolean models. In the present paper, we first compute the special form of mixed measures of convex cylinders and prove a translative integral formula for them. After adapting some results for mixed measures of convex bodies to this setting we then use this integral formula to obtain quermass densities for (non-stationary and non-isotropic) Poisson processes of convex cylinders. Furthermore, quermass densities of Boolean models of convex cylinders are expressed in terms of mixed densities of the underlying Poisson process generalizing classical formulas by Davy and recent results by Spiess and Spodarev.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davy, P.: Stereology—a statistical viewpoint. Dissertation, Australian National University, Canberra (1978)

  2. Fallert, H.: Intensitätsmaße und Quermaßdichten für (nicht-stationäre) zufällige Mengen und geometrische Punktprozesse. Dissertation, Universität Karlsruhe (TH), Karlsruhe (1992) (in German)

  3. Fallert, H.: Quermaßdichten für Punktprozesse konvexer Körper und Boolesche Modelle. Math. Nachr. 181, 165–184 (1996) (in German)

    Article  MATH  MathSciNet  Google Scholar 

  4. Goodey, P., Weil, W.: Translative integral formulae for convex bodies. Aequ. Math. 34, 64–77 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Schladitz, K., Peters, S., Reinel-Bitzer, D., Wiegmann, A., Ohser, J.: Design of acoustic trim based on geometric modeling and flow simulation for non-woven. Comput. Mat. Sci. 38, 56–66 (2006)

    Article  Google Scholar 

  6. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  7. Schneider, R., Weil, W.: Translative and kinematic integral formulae for curvature measures. Math. Nachr. 129, 76–80 (1985)

    MathSciNet  Google Scholar 

  8. Schneider, R., Weil, W.: Integralgeometrie. Teubner, Stuttgart (1992) (in German)

    MATH  Google Scholar 

  9. Schneider, R., Weil, W.: Stochastische Geometrie. Teubner, Stuttgart (2000) (in German)

    MATH  Google Scholar 

  10. Spiess, M., Spodarev, E.: Anisotropic dilated Poisson k-flat processes (to appear)

  11. Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. Wiley, New York (1995)

    MATH  Google Scholar 

  12. Weil, W.: Point processes of cylinders, particles and flats. Acta Appl. Math. 9, 103–136 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Weil, W.: Iterations of translative integral formulae and non-isotropic Poisson processes of particles. Math. Z. 205, 531–549 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Weil, W.: Mixed measures and functionals of translative integral geometry. Math. Nachr. 223, 161–184 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Michael Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, L.M. Mixed Measures of Convex Cylinders and Quermass Densities of Boolean Models. Acta Appl Math 105, 141–156 (2009). https://doi.org/10.1007/s10440-008-9269-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-008-9269-4

Keywords

Mathematics Subject Classification (2000)

Navigation