Skip to main content
Log in

Blow-up of the Solution for a p-Laplacian Equation with Positive Initial Energy

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper we consider a p-Laplacian equation with the homogeneous Dirichlet boundary condition. We establish a blow-up result for certain solution with positive initial energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dibendetto, E.: Degenerate Parabolic Equations. Springer, Berlin (1993)

    Google Scholar 

  2. Ding, J.T., Li, S.J.: Blow-up solutions and global solutions for a class of quasilinear parabolic equations with Robin boundary conditions. Comput. Math. Appl. 49, 689–701 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Erdem, D.: Blow-up of solutions to quasilinear parabolic equations. Appl. Math. Lett. 12, 65–69 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Levine, H., Park, S., Serrin, J.: Global existence and nonexistence theorems for quasilinear evolution equations of formally parabolic type. J. Differ. Equ. 142, 212–229 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Liu, W.J.: Periodic solutions of evolution m-Laplacian equations with a nonlinear convection term. Int. J. Math. Math. Sci. 27368, 1–10 (2007)

    Article  Google Scholar 

  6. Liu, W.J., Wu, B.: A note on extinction for fast diffusive p-Laplacian with sources. Math. Methods Appl. Sci. (2008). doi:10.1002/mma.976

    Google Scholar 

  7. Messaoudi, S.A.: A note on blow up of solutions of a quasilinear heat equation with vanishing initial energy. J. Math. Anal. Appl. 273, 243–247 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Souplet, Ph.: Finite time blow-up for a nonlinear parabolic equation with a gradient term and applications. Math. Methods Appl. Sci. 19, 1317–1333 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Souplet, Ph., Weissler, F.B.: Self-similar sub-solutions and blow-up for nonlinear parabolic equations. J. Math. Anal. Appl. 212, 60–74 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wang, M.X.: A note on a question of blow-up for semilinear parabolic equations. J. Math. Anal. Appl. 198, 289–300 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wang, M.X.: Blow-up rate estimates for semilinear parabolic systems. J. Differ. Equ. 170, 317–324 (2001)

    Article  MATH  Google Scholar 

  12. Wu, Z.Q., Zhao, J.N., Yi, J.X., Li, H.L.: Nonlinear Diffusion Equations. Jinlin University Press, Jinlin (1996) (in Chinese)

    Google Scholar 

  13. Vitillaro, E.: Global nonexistence theorems for a class of evolution equations with dissipation. Arch. Ration. Mech. Anal. 149, 155–182 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Zhao, J.N.: Existence and nonexistence of solutions for u t =div(| u|p−2 u)+f( u,u,x,t). J. Math. Anal. Appl. 172, 130–146 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Liu.

Additional information

This work was supported by the National Natural Science Foundation of China 10771032, and the Natural Science Foundation of Jiangsu province BK2006088.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Wang, M. Blow-up of the Solution for a p-Laplacian Equation with Positive Initial Energy. Acta Appl Math 103, 141–146 (2008). https://doi.org/10.1007/s10440-008-9225-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-008-9225-3

Keywords

Mathematics Subject Classification (2000)

Navigation