Skip to main content
Log in

Time-Varying Fractionally Integrated Processes with Finite or Infinite Variance and Nonstationary Long Memory

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Recently, Philippe et al. (C.R. Acad. Sci. Paris. Ser. I 342, 269–274, 2006; Theory Probab. Appl., 2007, to appear) introduced a new class of time-varying fractionally integrated filters A(d)x t =∑ j=0 a j (t)x tj , B(d)x t =∑ j=0 b j (t)x tj depending on arbitrary given sequence d=(d t ,t∈ℤ) of real numbers, such that A(d)−1=B(−d), B(d)−1=A(−d) and such that when d t d is a constant, A(d)=B(d)=(1−L)d is the usual fractional differencing operator. Philippe et al. studied partial sums limits of (nonstationary) filtered white noise processes X t =B(d)ε t and Y t =A(d)ε t in the case when (1) d is almost periodic having a mean value \(\bar{d}\in (0,1/2)\) , or (2) d admits limits d ±=lim  t→±∞ d t ∈(0,1/2) at t=±∞. The present paper extends the above mentioned results of Philippe et al. into two directions. Firstly, we consider the class of time-varying processes with infinite variance, by assuming that ε t ,t∈ℤ are iid rv’s in the domain of attraction of α-stable law (1<α≤2). Secondly, we combine the classes (1) and (2) of sequences d=(d t ,t∈ℤ) into a single class of sequences d=(d t ,t∈ℤ) admitting possibly different Cesaro limits \(\bar{d}_{\pm}\in(0,1-(1/\alpha))\) at ±∞. We show that partial sums of X t and Y t converge to some α-stable self-similar processes depending on the asymptotic parameters \(\bar{d}_{\pm}\) and having asymptotically stationary or asymptotically vanishing increments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astrauskas, A.: Limit theorems for sums of linearly generated random variables. Lith. Math. J. 23, 127–134 (1983)

    Article  Google Scholar 

  2. Avram, F., Taqqu, M.S.: Weak convergence of sums of moving averages in the α-stable domain of attraction. Ann. Probab. 20, 483–503 (1992)

    MATH  Google Scholar 

  3. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods. Springer, New York (1991)

    Google Scholar 

  4. Davydov, Y.: The invariance principle for stationary processes. Theory Probab. Appl. 15, 487–498 (1970)

    Article  Google Scholar 

  5. Ibragimov, I.A., Linnik, Y.V.: Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen (1971)

    MATH  Google Scholar 

  6. Kasahara, Y., Maejima, M.: Weighted sums of i.i.d. random variables attracted to integrals of stable processes. Probab. Theory Relat. Fields 78, 75–96 (1988)

    Article  MATH  Google Scholar 

  7. Kokoszka, P.S., Taqqu, M.S.: Fractional ARIMA with stable innovations. Stoch. Process. Appl. 60, 19–47 (1995)

    Article  MATH  Google Scholar 

  8. Philippe, A., Surgailis, D., Viano, M.-C.: Invariance principle for a class of non stationary processes with long memory. C.R. Acad. Sci. Paris Ser. I 342, 269–274 (2006)

    MATH  Google Scholar 

  9. Philippe, A., Surgailis, D., Viano, M.-C.: Almost periodically correlated processes with long memory. In: Bertail, P., Doukhan, P., Soulier, P. (eds.) Dependence in Probability and Statistics. Lecture Notes in Statistics, vol. 187, pp. 159–194. Springer, Berlin (2006)

    Chapter  Google Scholar 

  10. Philippe, A., Surgailis, D., Viano, M.-C.: Time varying fractionally integrated processes with nonstationary long memory. Theory Probab. Appl. (2007, to appear)

  11. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman and Hall, New York (1994)

    MATH  Google Scholar 

  12. Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, Cambridge (1999)

    MATH  Google Scholar 

  13. Surgailis, D.: On L 2 and non-L 2 multiple stochastic integration. In: Arató, M., Vermes, D., Balakrishnan, A.V. (eds.) Stochastic Differential Systems. Lecture Notes Control Inform. Sci., vol. 36, pp. 212–226. Springer, Berlin (1981)

    Chapter  Google Scholar 

  14. Vaičiulis, M.: Convergence of sums of linear processes with long-range dependence and infinite variance. Lith. Math. J. 43, 115–120 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marijus Vaičiulis.

Additional information

The research was supported by the bilateral France-Lithuania scientific project Gilibert and the Lithuanian State Science and Studies Foundation, grant no. T-10/06.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bružaitė, K., Surgailis, D. & Vaičiulis, M. Time-Varying Fractionally Integrated Processes with Finite or Infinite Variance and Nonstationary Long Memory. Acta Appl Math 96, 99–118 (2007). https://doi.org/10.1007/s10440-007-9090-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-007-9090-5

Keywords

Navigation