Skip to main content
Log in

Computing Matveev’s Complexity via Crystallization Theory: The Orientable Case

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

By means of a slight modification of the notion of GM-complexity introduced in [Casali, M.R., Topol. Its Appl., 144: 201–209, 2004], the present paper performs a graph-theoretical approach to the computation of (Matveev’s) complexity for closed orientable 3-manifolds. In particular, the existing crystallization catalogue \(\mathcal C^{28}\) available in [Lins, S., Knots and Everything 5, World Scientific, Singapore, 1995] is used to obtain upper bounds for the complexity of closed orientable 3-manifolds triangulated by at most 28 tetrahedra. The experimental results actually coincide with the exact values of complexity, for all but three elements. Moreover, in the case of at most 26 tetrahedra, the exact value of the complexity is shown to be always directly computable via crystallization theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amendola, G., Martelli, B.: Non-orientable 3-manifolds of small complexity. Topology Appl. 133, 157–178 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Burton, B.A.: Minimal triangulations and normal surfaces. PhD thesis, University of Melbourne, Australia, May (2003) (available from the Web page http://regina.sourceforge.net/data.html)

  3. Burton, B.A.: Structures of small closed non-orientable 3-manifold triangulations. J. Knot Theory Ramifications (to appear), GT/0311113.

  4. Bandieri, P., Casali, M.R., Gagliardi, C.: Representing manifolds by crystallization theory: foundations, improvements and related results. Atti Sem. Mat. Fis. Univ. Modena 49(Suppl.), 283–337 (2001)

    MATH  MathSciNet  Google Scholar 

  5. Casali, M.R.: Classifying PL 5-manifolds by regular genus: the boundary case. Canad. J. Math. 49, 193–211 (1997)

    MATH  MathSciNet  Google Scholar 

  6. Casali, M.R.: Classification of non-orientable 3-manifolds admitting decompositions into ≤ 26 coloured tetrahedra. Acta Appl. Math. 54, 75–97 (1999)

    Article  MathSciNet  Google Scholar 

  7. Casali, M.R.: Representing and recognizing torus bundles over \(\mathbb S^1\). Bol. Soc. Mat. Mexicana (special issue in honor of Fico), 10(3), 89–106 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Casali, M.R.: Computing Matveev’s complexity of non-orientable 3-manifolds via crystallization theory. Topology Appl. 144, 201–209 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Casali, M.R.: Estimating Matveev’s complexity via crystallization theory. Discrete Math. (to appear)

  10. Casali, M.R., Cristofori, P.: Archives of closed 3-manifolds with low gem-complexity. Available from the Web page http://cdm.unimo.it/home/matematica/casali.mariarita/DukeIII.htm

  11. Casali, M.R., Gagliardi, C.: Classifying PL 5-manifolds up to regular genus seven. Proc. Amer. Math. Soc. 120(1), 275–283 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Casali, M.R., Malagoli, L.: Handle-decompositions of PL 4-manifolds. Cahiers Topologie Géom. Différentielle Catég. 38, 141–160 (1997)

    MATH  MathSciNet  Google Scholar 

  13. Ferri, M., Gagliardi, C.: The only genus zero n-manifold is \(\mathbb S^{\text {\it n}}\,\). Proc. Amer. Math. Soc. 85, 638–642 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ferri, M., Gagliardi, C., Grasselli, L.: A graph-theoretical representation of PL-manifolds. A survey on crystallizations. Aequationes Math. 31, 121–141 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gagliardi, C.: Extending the concept of genus to dimension n. Proc. Amer. Math. Soc. 81, 473–481 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hempel, J.: 3-manifolds. Ann. of Math. Stud. 86, Princeton University Press, (1976)

  17. Hilton, P.J., Wylie, S.: An introduction to algebraic topology – homology theory. Cambridge University Press, Cambridge UK (1960)

    Google Scholar 

  18. Lins, S.: Gems, computers and attractors for 3-manifolds, Knots and Everything 5, World Scientific, Singapore (1995)

  19. Martelli, B., Petronio, C.: Three-manifolds having complexity at most 9. Experiment. Math. 10(2), 207–236 (2001)

    MATH  MathSciNet  Google Scholar 

  20. Martelli, B., Petronio, C.: Census 7. Table of closed orientable irreducible 3-manifolds having complexity 7. Available from the Web page http://www.dm.unipi.it/pages/petronio/public_html/files/3D/c9/c9_census.html

  21. Matveev, S.: Complexity theory of three-dimensional manifolds. Acta Appl. Math. 19, 101–130 (1990)

    MATH  MathSciNet  Google Scholar 

  22. Matveev, S.: Algorithmic topology and classification of 3-manifolds. Algorithms Comput. Math. 9, Springer, Berlin Heidelberg New York (2003)

    Google Scholar 

  23. Matveev, S.: Recognition and tabulation of three-dimensional manifolds. Doklady RAS 400(1), 26–28 (2005). (Russian; English trans. in Doklady Mathematics, 71, 20–22 (2005))

    Google Scholar 

  24. Matveev, S.: Tabulation of 3-manifolds. Uspekhi Mat. Nauk. 60(4), 97–122 (2005) (Russian; English trans. in Russian Math. Surveys 60(4), 673–698(2005))

    MathSciNet  Google Scholar 

  25. Ovckinnikov, M.A.: The table of 3-manifolds of complexity 7 (Preprint). Chelyabinsk State University, Russia (1997)

    Google Scholar 

  26. Scott, P.: The geometries of 3-manifolds. Bull. London Math. Soc. 15, 401–487 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  27. White, A.T.: Graphs, groups and surfaces. North Holland, Amsterdam, The Netherlands (1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rita Casali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casali, M.R., Cristofori, P. Computing Matveev’s Complexity via Crystallization Theory: The Orientable Case. Acta Appl Math 92, 113–123 (2006). https://doi.org/10.1007/s10440-006-9065-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-006-9065-y

Key words

Mathematics Subject Classifications (2000)

Navigation