Skip to main content

On the Design of Cryptographic Primitives

Abstract

The main objective of this work is twofold. On the one hand, it gives a brief overview of the area of two-party cryptographic protocols. On the other hand, it proposes new schemes and guidelines for improving the practice of robust protocol design. In order to achieve such a double goal, a tour through the descriptions of the two main cryptographic primitives is carried out. Within this survey, some of the most representative algorithms based on the Theory of Finite Fields are provided and new general schemes and specific algorithms based on Graph Theory are proposed.

This is a preview of subscription content, access via your institution.

References

  1. Abadi, M., Needham, R.: Prudent engineering practice for cryptographic protocols. IEEE Trans. Softw. Eng. 22(1), 6–15 (1996)

    Article  Google Scholar 

  2. Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. Advances in Cryptology. In: Proceedings of Crypto ’89. Lecture Notes in Computer Science 435, pp. 589–590. Springer, Berlin Heidelberg New York (1989)

  3. Blum, M.: Coin Flipping by Telephone: a Protocol for Solving Impossible Problems. IEEE Computer Conference, pp. 133–137 (1982)

  4. Blum, M., Vazirani, U.V., Vazirani, V.V.: Reducibility among protocols. Advances in Cryptology. In: Proceedings of Crypto ’83, pp. 137–146. Plenum (1984)

  5. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans. Comput. Syst. 1(8), 18–36 (1990)

    Article  Google Scholar 

  6. Caballero, P., Hernández, C.: Strong solutions to the identification problem. Proceedings of the 7th Annual International Computing and Combinatorics Conference COCOON ’01. Lecture Notes in Computer Science 2108, pp. 257–261. Springer, Berlin Heidelberg New York (2001)

  7. Clark, S., Millen, J., Freedman, S.: The interrogator: protocol security analysis. IEEE Trans. Softw. Eng. 13(2), 274–288 (1987)

    Google Scholar 

  8. Crepeau, C.: Equivalence between two flavours of oblivious transfers. Advances in Cryptology. In: Proceedings of Crypto ’87. Lecture Notes in Computer Science 293, pp. 350–354. Springer, Berlin Heidelberg New York (1987)

    Google Scholar 

  9. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inform. Theory IT-22, 644–654 (1976)

    MathSciNet  Article  Google Scholar 

  10. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inform. Theory 29(2), 198–208 (1983)

    MATH  MathSciNet  Article  Google Scholar 

  11. Even, S.: A protocol for signing contracts. Advances in Cryptology. In: Proceedings of Crypto ’81. Lecture Notes in Computer Science, pp. 148–153. Springer, Berlin Heidelberg New York (1982)

  12. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts (extended abstract). Advances in Cryptology. In: Proceedings of Crypto ’82, pp. 205–210. Plenum (1982)

  13. Even, S., Yacobi, Y.: Relations among public-key signature systems, TR-175, Computer Science Dept., Technion, Israel (1980)

  14. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptology 1, 77–95 (1988)

    MATH  MathSciNet  Article  Google Scholar 

  15. Fortnow, L.: The complexity of perfect zero-knowledge. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing STOC ’87, pp. 204–209 (1987)

  16. Goldreich, O., Micali, S., Wigderson, A.: How to Solve any Protocol Problem. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing STOC ’87, pp. 218–229 (1987)

  17. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing STOC ’85, pp. 291–304 (1985)

  18. Gong, L., Syverson, P.: Fail-stop protocols: A new approach to designing secure protocols. In: Proceedings of the 5th International Working Conference on Dependable Computing for Critical Applications, pp. 44–55 (1995)

  19. Heintze, N., Tygar, J.: A model for secure protocols and their compositions. In: Proceedings of the IEEE, Symposium on Research in Security and Privacy, pp. 2–13 (1994)

  20. Impagliazzo, R., Yung, M.: Direct minimum knowledge computations. Advances in Cryptology – Crypto’87. Lecture Notes in Computer Science 293, pp. 40–51. Springer, Berlin Heidelberg New York (1987)

  21. Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of 20th ACM Symposium on Theory of Computing, STOC ’88, pp. 20–31 (1988)

  22. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press (1986)

  23. Nao, M., Fagin, R., Winkler, P.: Comparing information without leaking it. Commun. ACM 39(5), 77–85 (1996)

    Article  Google Scholar 

  24. Odlyzko, A.M.: Discrete logarithms in finite fields and their cryptographic significance. Advances in Cryptology. In: Proceedings of Eurocrypt ’84, Lecture Notes in Computer Science 209, pp. 224–314. Springer, Berlin Heidelberg New York (1985)

  25. Rabin, M.O.: How to Exchange Secrets by Oblivious Transfer. Tech. Report TR-81, Harvard Aitken Computation Laboratory (1981)

  26. Shostak, R., Lamport, L., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4, 382–401 (1982)

    MATH  Article  Google Scholar 

  27. Yao, A.: Protocols for secure computations. Proceedings of Foundations of Computer Science FOCS’82, pp. 160–164 (1982)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pino Caballero-Gil.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caballero-Gil, P., Fúster-Sabater, A. On the Design of Cryptographic Primitives. Acta Appl Math 93, 279–297 (2006). https://doi.org/10.1007/s10440-006-9044-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-006-9044-3

Mathematics Subject Classifications (2000)

  • 94A60
  • 11T99
  • 14G50
  • 11T71

Key words

  • cryptography
  • secure communications
  • finite fields
  • discrete mathematics