Skip to main content
Log in

An Algebraic Interpretation to the Operator-Theoretic Approach to Stabilizability. Part I: SISO Systems

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

The purpose of this paper is to show that a duality exists between the fractional ideal approach [23, 26] and the operator-theoretic approach [4, 6, 8, 9, 33, 34] to stabilization problems. In particular, this duality helps us to understand how the algebraic properties of systems are reflected by the operator-theoretic approach and conversely. In terms of modules, we characterize the domain and the graph of an internally stabilizable plant or that of a plant which admits a (weakly) coprime factorization. Moreover, we prove that internal stabilizability implies that the graph of the plant and the graph of a stabilizing controller are direct summands of the global signal space. These results generalize those obtained in [6, 8, 9, 33, 34]. Finally, we exhibit a class of signal spaces over which internal stabilizability is equivalent to the existence of a bounded inverse for the linear operator mapping the errors e1 and e2 of the closed-loop system to the inputs u1 and u2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourbaki, N.: Algèbre Homologique, Masson, Paris, 1980, Chapter 10.

    Google Scholar 

  2. Bourbaki, N.: Commutative Algebra, Springer-Verlag, Berlin, 1986, Chapters 1–7.

    Google Scholar 

  3. Curtain, R. F. and Zwart, H. J.: An Introduction to Infinite-Dimensional Linear Systems Theory, TAM 21, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  4. Desoer, C. A., Liu, R. W., Murray, J. and Saeks, R.: Feedback system design: the fractional representation approach to analysis and synthesis, IEEE Trans. Automat. Control 25 (1980), 399–412.

    Article  Google Scholar 

  5. Desoer, C. A. and Vidyasagar, M.: Feedback Systems: Input-Output Properties, Academic Press, New York, 1975.

    Google Scholar 

  6. Doyle, J. C., Georgiou, T. T. and Smith, M. C.: The parallel projection operators of a nonlinear feedback system, Systems Control Lett. 20 (1993), 79–85.

    Article  Google Scholar 

  7. Fuchs, L. and Salce, L.: Modules over Non-Noetherian Domains, Mathematical Survey and Monographs 84, Amer. Math. Soc., Providence, RI, 2000.

    Google Scholar 

  8. Georgiou, T. T. and Smith, M. C.: Optimal robustness in the gap metric, IEEE Trans. Automat. Control 35 (1990), 673–685.

    Article  Google Scholar 

  9. Georgiou, T. T. and Smith, M. C.: Graphs, causality, and stabilizabity: Linear, shift-invariant systems on ℒ2[0,∞), Math. Control Signals Systems 6 (1993), 195–223.

    Article  Google Scholar 

  10. Glover, K. and McFarlane, D.: Robust stabilization of normalized coprime factor plant descriptions with H-bounded uncertainty, IEEE Trans. Automat. Control 34 (1989), 821–830.

    Article  Google Scholar 

  11. Gluesing-Luerssen, H.: Linear Delay-Differential Systems with Commensurate Delays: An Algebraic Approach, Lecture Notes in Math. 1770, Springer, New York, 2002.

    Google Scholar 

  12. Hoffman, K.: Banach Spaces of Analytic Functions, Dover, New York, 1962.

    Google Scholar 

  13. Inouye, Y.: Linear systems with transfer functions of bounded type: Factorization approach, In: N. Nagai (ed.), Linear Circuits, Systems and Signal Processing, Advanced Theory and Applications, Marcel Dekker, New York, 1990, pp. 141–173.

    Google Scholar 

  14. Malgrange, B.: Systèmes à coefficients constants, Séminaire Bourbaki 246 (1962/63), 1–11.

    Google Scholar 

  15. Nikolskii, N. K.: Treatise on the Shift Operator, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  16. Oberst, U.: Multidimensional constant linear systems, Acta Appl. Math. 20 (1990), 1–175.

    Article  Google Scholar 

  17. Pillai, H. K. and Shankar, S.: A behavioral approach to control of distributed systems, SIAM J. Control Optim. 37 (1998), 388–408.

    Article  Google Scholar 

  18. Polderman, J. W. and Willems, J. C.: Introduction to Mathematical Systems Theory. A Behavioral Approach, TMA 26, Springer, Berlin, 1998.

    Google Scholar 

  19. Pommaret, J.-F.: Partial Differential Control Theory, Kluwer, Dordrecht, 2001.

    Google Scholar 

  20. Pommaret, J. F. and Quadrat, A.: Localization and parametrization of linear multidimensional control systems, Systems Control Lett. 37 (1999), 247–260.

    Article  Google Scholar 

  21. Pommaret, J. F. and Quadrat, A.: A functorial approach to the behaviour of multidimensional control systems, Appl. Math. Computer Sci. 13 (2003), 7–13.

    Google Scholar 

  22. Quadrat, A.: The fractional representation approach to synthesis problems: An algebraic analysis viewpoint I. (Weakly) doubly coprime factorizations, II. Internal stabilization, SIAM J. Control Optim. 42 (2003), 266–299, 300–320.

    Article  Google Scholar 

  23. Quadrat, A.: On a generalization of the Youla–Kučera paramatrization. Part I: The fractional ideal approach to SISO systems, Systems Control Lett. 50 (2003), 135–148.

    Article  Google Scholar 

  24. Quadrat, A.: On a generalization of the Youla–Kučera parametrization. Part II: The lattice approach to MIMO systems, Math. Control Signals Systems (2005), to appear.

  25. Quadrat, A.: A lattice approach to analysis and synthesis problems, Math. Control Signals Systems (2005), to appear.

  26. Quadrat, A.: Every internally stabilizable multidimensional system admits a doubly coprime factorization, In: Proceedings of MTNS04, Leuven, Belgium (05-09/07/04).

  27. Quadrat, A.: “Stabilizing” the stabilizing controllers, In: Proceedings of MTNS04, Leuven, Belgium (05-09/07/04).

  28. Quadrat, A.: An elementary proof of the general Q-parametrization of all stabilizing controllers, In: Proceedings of the World IFAC Congress, Prague, Czeck Republic (04-08/07/05), to appear.

  29. Rotman, J. J.: An Introduction to Homological Algebra, Academic Press, New York, 1979.

    Google Scholar 

  30. Shankar, S.: Geometric completeness of distribution spaces, Acta Appl. Math. 77 (2003), 168–180.

    Article  Google Scholar 

  31. Shankar, S. and Sule, V. R.: Algebraic geometry aspects of feedback stabilization, SIAM J. Control Optim. 30 (1992), 11–30.

    Article  Google Scholar 

  32. Smith, M. C.: On the stabilization and the existence of coprime factorizations, IEEE Trans. Automat. Control 34 (1989), 1005–1007.

    Article  Google Scholar 

  33. Sule, V. R.: Feedback stabilization over commutative rings: The matrix case, SIAM J. Control Optim. 32 (1994), 1675–1695; Corrigendum, SIAM J. Control Optim. 36 (1998), 2194–2195.

    Article  Google Scholar 

  34. Vidyasagar, M.: On the use of right-coprime factorizations in distributed feedback systems containing unstable systems, IEEE Trans. Circuits Systems 25 (1978), 916–921.

    Article  Google Scholar 

  35. Vidyasagar, M.: Control System Synthesis: A Factorization Approach, MIT Press, Cambridge, MA, 1985.

    Google Scholar 

  36. Wood, J.: Modules and behaviours in nD systems theory, Multidimens. Systems Signal Process. 11 (2000), 11–48.

    Article  Google Scholar 

  37. Zames, G. and Francis, B.: Feedback, minimax sensitivity, and optimal robustness, IEEE Trans. Automat. Control 28 (1983), 585–601.

    Article  Google Scholar 

  38. Zerz, E.: Topics in Multidimensional Linear Systems Theory, Lecture Notes in Control and Inform. Sci. 256, Springer, New York, 2000.

    Google Scholar 

  39. Zhu, S. Q.: Graph topology and gap topology for unstable systems, IEEE Trans. Automat. Control 34 (1989), 848–855.

    Article  Google Scholar 

  40. Zhu, S. Q.: On normalized Bezout fractions of distributed LTI systems, IEEE Trans. Automat. Control 36 (1991), 489–491.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Quadrat.

Additional information

Mathematics Subject Classifications (2000)

93C05, 93D25, 93B25, 93B28, 16D40, 30D55, 47A05.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quadrat, A. An Algebraic Interpretation to the Operator-Theoretic Approach to Stabilizability. Part I: SISO Systems. Acta Appl Math 88, 1–45 (2005). https://doi.org/10.1007/s10440-005-6697-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-005-6697-2

Keywords

Navigation