Skip to main content
Log in

Soliton Theory, Symmetric Functions and Matrix Integrals

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

We consider a certain scalar product of symmetric functions which is parameterized by a function r and an integer n. On the one hand we have a fermionic representation of this scalar product. On the other hand we get a representation of this product with the help of multi-integrals. This gives links between a theory of symmetric functions, soliton theory and models of random matrices (such as a model of normal matrices).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, M., Shiota, T. and van Moerbeke, P.: Phys. Lett. A 194(1–2) (1994), 33–34.

    Article  MathSciNet  Google Scholar 

  2. Adler, M. and van Moerbeke, P.: Integrals over Grassmannians and random permutations, math.CO/0110281.

  3. Chau, L.-L. and Zaboronsky, O.: On the structure of correlation functions in the normal matrix models, Comm. Math. Phys. 196 (1998), 203–247; hep-th/9711091.

    MATH  MathSciNet  Google Scholar 

  4. Date, E., Jimbo, M., Kashiwara, M. and Miwa, T.: Transformation groups for soliton equations, In: M. Jimbo and T. Miwa (eds), Nonlinear Integrable Systems – Classical Theory and Quantum Theory, World Scientific, 1983, pp. 39–120.

  5. Dickey, L. A.: Soliton Equations and Hamiltonian System, World Scientific, Singapore, 1991.

    Google Scholar 

  6. Dickey, L. A.: Modern Phys. Lett. A 8 (1993), 1357–1377.

    MATH  MathSciNet  Google Scholar 

  7. Dryuma, V.: JETF Lett. 19 (1974), 219.

    Google Scholar 

  8. Gross, K. I. and Richards, D. S.: Special functions of matrix arguments. I: Algebraic induction, zonal polynomials, and hypergeometric functions, Trans. Amer. Math. Soc. 301 (1987), 781–811.

    MATH  MathSciNet  Google Scholar 

  9. Harish Chandra: Amer. J. Math. 80 (1958), 241.

    MathSciNet  Google Scholar 

  10. Harnad, J. and Orlov, A. Yu.: Schur function expansions of matrix integrals, CRM Preprint, Montreal, 2001.

  11. Harnad, J. and Orlov, A. Yu.: Scalar products of symmetric functions and matrix integrals, nlin.SI/0211051, reported at the NEEDS-2002 meeting in Cadiz, to be published in Teor. Mat. Phys. 137(2) (November 2003).

  12. Itzykson, C. and Zuber, J. B.: J. Math. Phys. 21 (1980), 411.

    MATH  MathSciNet  Google Scholar 

  13. Kadomtsev, V. V. and Petviashvili, V. I.: Soviet Phys. Dokl. 15 (1970), 539.

    MATH  Google Scholar 

  14. Konopelchenko, B. and Alonso, L. M.: The KP hierarchy in Miwa coordinates, solvint/9905005.

  15. Macdonald, I. G.: Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1995.

    MATH  Google Scholar 

  16. Mehta, M. L.: Random Matrices, Academic Press, Inc., 1991.

  17. Mikhailov, A. V.: On the integrability of two-dimensional generalization of the Toda lattice, Letters in Journal of Experimental and Theoretical Physics 30 (1979), 443–448.

    Google Scholar 

  18. Milne, S. C.: Summation theorems for basic hypergeometric series of Schur function argument, In: A. A. Gonchar and E. B. Saff (eds), Progress in Approximation Theory, Springer-Verlag, New York, 1992, pp. 51–77.

    Google Scholar 

  19. Mineev-Weinstein, M., Wiegmann, P. and Zabrodin, A.: Integrable structure of interface dynamics, LAUR-99-0703.

  20. Miwa, T.: On Hirota’s difference equations, Proc. Japan Acad. Ser. A 58 (1982), 9–12.

    MATH  MathSciNet  Google Scholar 

  21. Morozov, A. Yu.: Integrability and matrix models, Uspekhi Fiz. Nauk 164 (1994), 3–62.

    Article  Google Scholar 

  22. Orlov, A. Yu.: Vertex operators, ∂ bar problem, symmetries, Hamiltonian and Lagrangian formalism of (2+1) dimensional integrable systems, In: V. G. Bar’yakhtar and V. E. Zakharov (eds), Plasma Theory and Nonlinear and Turbulent Processes in Physics, Proc. III Kiev Intern. Workshop, Vol. I. Proceedings (Kiev 1987), World Scientific, Singapore, 1988, pp. 116–134.

    Google Scholar 

  23. Orlov, A. Yu.: Hypergeometric functions related to Schur Q-polynomials and BKP equation, to be published in Teor. Mat. Phys. 137(2) (November 2003).

  24. Orlov, A. Yu. and Scherbin, D. M.: Fermionic representation for basic hypergeometric functions related to Schur polynomials, nlin.SI/0001001.

  25. Orlov, A. Yu. and Winternitz, P.: Theoret. Math. Phys. 113 (1997), 1393–1417.

    MathSciNet  Google Scholar 

  26. Orlov, A. Yu. and Scherbin, M. D.: Milne’s hypergeometric functions in terms of free fermions, J. Phys. A: Math. Gen. 34 (2001), 2295–2310.

    MATH  MathSciNet  Google Scholar 

  27. Orlov, A. Yu. and Scherbin, D. M.: Multivariate hypergeometric functions as tau functions of Toda lattice and Kadomtsev–Petviashvili equation, Physica D 152–153 (March 2001), 51–56.

    MathSciNet  Google Scholar 

  28. Orlov, A. Yu. and Scherbin, D. M.: Hypergeometric solutions of soliton equations, Teor. Mat. Phys. 128(1) (2001), 84–108.

    MathSciNet  Google Scholar 

  29. Takasaki, K.: Initial value problem for the Toda lattice hierarchy, Adv. Stud. Pure Math. 4 (1984), 139–163.

    MathSciNet  Google Scholar 

  30. Takasaki, K.: The Toda lattice hierarchy and generalized String equation, Comm. Math. Phys. 181 (1996), 131; hep-th/9506089, June 1995.

    MATH  MathSciNet  Google Scholar 

  31. Takebe, T.: Representation theoretical meaning of initial value problem for the Toda lattice hierarchy I, LMP 21 (1991), 77–84.

    MATH  MathSciNet  Google Scholar 

  32. Takebe, T.: Representation theoretical meaning of initial value problem for the Toda lattice hierarchy II, Publ. RIMS, Kyoto Univ. 27 (1991), 491–503.

    Article  MATH  MathSciNet  Google Scholar 

  33. Takebe, T. and Takasaki, K.: Integrable hierarchies and dispersionless limit, Rev. Math. Phys. 7 (1995), 743–808; hep-th/94050096.

    MATH  MathSciNet  Google Scholar 

  34. Ueno, K. and Takasaki, K.: Adv. Stud. Pure Math. 4 (1984), 1–95.

    MathSciNet  Google Scholar 

  35. Vilenkin, N. Ya. and Klimyk, A. U.: Representation of Lie Groups and Special Functions. Volume 3: Classical and Quantum Groups and Special Functions, Kluwer Academic Publishers, 1992.

  36. Zabrodin, A., Kharchev, S., Mironov, A., Marshakov, A. and Orlov, A.: Nuclear Phys. B (1992).

  37. Zakharov, V. E. and Shabat, A. B.: J. Funct. Anal. Appl. 8 (1974), 226, 13 (1979), 166.

    MATH  Google Scholar 

  38. Zakharov, V. E., Manakov, S. V., Novikov, S. P. and Pitaevsky, L. P.: The Theory of Solitons. The Inverse Scattering Method.

  39. Zinn-Justion, P.: HCIZ integral and 2D Toda lattice hierarchy, math-ph/0202045.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Orlov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlov, A.Y. Soliton Theory, Symmetric Functions and Matrix Integrals. Acta Appl Math 86, 131–158 (2005). https://doi.org/10.1007/s10440-005-0467-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-005-0467-z

Keywords

Navigation