Skip to main content
Log in

Indecomposable Sylow 2-Subgroups of Simple Groups

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

Let S be a Sylow 2-subgroup of a finite simple group and let S=S 1×S 2×⋅⋅⋅×S k be the direct product and each component S i, i=1,2,. . .,k is indecomposable. In this article, we prove that each S i is also a Sylow 2-subgroup of some simple group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschbacher, M.: On finite groups of Lie type and odd characteristic, J. Algebra 66 (1980), 400–424.

    MATH  MathSciNet  Google Scholar 

  2. Carter, R.: Simple Groups of Lie Type, Wiley, New York, 1989.

    MATH  Google Scholar 

  3. Carter, R. and Fong, P.: The Sylow 2-subgroups of the finite classical groups, J. Algebra 1 (1964), 139–151.

    MATH  MathSciNet  Google Scholar 

  4. Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A.: Atlas of Finite Groups, Clarendon Press, Oxford, 1985.

    MATH  Google Scholar 

  5. Gorenstein, G. and Harada, K.: Finite simple groups of low 2-rank and the families G 2(q) and D 24 (q), q odd, Bull. Amer. Math. Soc. 77 (1971), 829–862.

    Article  MATH  MathSciNet  Google Scholar 

  6. Gorenstein, G., Lyons, R. and Solomon, R.: The Classification of the Finite Simple Groups, Number 3, Amer. Math. Soc., Providence, RI, 1998.

    Google Scholar 

  7. Guterman, M. M.: A characterization of the group F 4(2n), J. Algebra 20 (1972), 1–23.

    MATH  MathSciNet  Google Scholar 

  8. Huppert, B.: Geometric Algebra, Lecture Notes, Univ. of Illinois at Chicago Circle, 1970.

  9. Ree, R.: A family of simple groups associated with the simple Lie algebra of type F 4, Amer. J. Math. 83 (1961), 401–420.

    MATH  MathSciNet  Google Scholar 

  10. Taylor, D. E.: The Geometry of the Classical Groups, Sigma Series in Pure Mathematics 9, Heldermann Verlag, Berlin.

  11. Wong, W. J.: Twisted wreath products and Sylow 2-subgroups of classical simple groups, Math. Z. 97 (1967), 406–424.

    MATH  MathSciNet  Google Scholar 

  12. Suzuki, M.: On a class of doubly transitive groups, Ann. of Math. 75(1) (1962), 105–145.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichiro Harada.

Additional information

Mathematics Subject Classifications (2000)

20E32, 20D20.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, K., Lang, M.L. Indecomposable Sylow 2-Subgroups of Simple Groups. Acta Appl Math 85, 161–194 (2005). https://doi.org/10.1007/s10440-004-5618-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-004-5618-0

Keywords

Navigation