Skip to main content
Log in

Controlled Mechanical Property Gradients Within a Digital Light Processing Printed Hydrogel-Composite Osteochondral Scaffold

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tissue engineered scaffolds are needed to support physiological loads and emulate the micrometer-scale strain gradients within tissues that guide cell mechanobiological responses. We designed and fabricated micro-truss structures to possess spatially varying geometry and controlled stiffness gradients. Using a custom projection microstereolithography (μSLA) system, using digital light projection (DLP), and photopolymerizable poly(ethylene glycol) diacrylate (PEGDA) hydrogel monomers, three designs with feature sizes < 200 μm were formed: (1) uniform structure with 1 MPa structural modulus (\(E\)) designed to match equilibrium modulus of healthy articular cartilage, (2) \(E\) = 1 MPa gradient structure designed to vary strain with depth, and (3) osteochondral bilayer with distinct cartilage (\(E\) = 1 MPa) and bone (\(E\) = 7 MPa) layers. Finite element models (FEM) guided design and predicted the local mechanical environment. Empty trusses and poly(ethylene glycol) norbornene hydrogel-infilled composite trusses were compressed during X-ray microscopy (XRM) imaging to evaluate regional stiffnesses. Our designs achieved target moduli for cartilage and bone while maintaining 68–81% porosity. Combined XRM imaging and compression of empty and hydrogel-infilled micro-truss structures revealed regional stiffnesses that were accurately predicted by FEM. In the infilling hydrogel, FEM demonstrated the stress-shielding effect of reinforcing structures while predicting strain distributions. Composite scaffolds made from stiff μSLA-printed polymers support physiological load levels and enable controlled mechanical property gradients which may improve in vivo outcomes for osteochondral defect tissue regeneration. Advanced 3D imaging and FE analysis provide insights into the local mechanical environment surrounding cells in composite scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abaci, A., and M. Guvendiren. Designing decellularized extracellular matrix-based bioinks for 3D bioprinting. Adv. Healthc. Mater. 9:2000734, 2020. https://doi.org/10.1002/adhm.202000734.

    Article  CAS  Google Scholar 

  2. Aisenbrey, E. A., and S. J. Bryant. Mechanical loading inhibits hypertrophy in chondrogenically differentiating hMSCs within a biomimetic hydrogel. J. Mater. Chem. B 4:3562–3574, 2016. https://doi.org/10.1039/c6tb00006a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aisenbrey, E. A., and S. J. Bryant. A MMP7-sensitive photoclickable biomimetic hydrogel for MSC encapsulation towards engineering human cartilage. J. Biomed. Mater. Res. A 106A:2344–2355, 2018. https://doi.org/10.1002/jbm.a.36412.

    Article  CAS  Google Scholar 

  4. Aisenbrey, E. A., A. Tomaschke, E. Kleinjan, A. Muralidharan, C. Pascual-Garrido, R. R. McLeod, V. L. Ferguson, and S. J. Bryant. A stereolithography-based 3D printed hybrid scaffold for in situ cartilage defect repair. Macromol. Biosci. 2018. https://doi.org/10.1002/mabi.201700267.

    Article  PubMed  Google Scholar 

  5. Aisenbrey, E. A., A. A. Tomaschke, S. A. Schoonraad, K. M. Fischenich, J. A. Wahlquist, M. A. Randolph, V. L. Ferguson, and S. J. Bryant. Assessment and prevention of cartilage degeneration surrounding a focal chondral defect in the porcine model. Biochem. Biophys. Res. Commun. 514:940–945, 2019. https://doi.org/10.1016/j.bbrc.2019.05.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Allen, K. D., L. M. Thoma, and Y. M. Golightly. Epidemiology of osteoarthritis. Osteoarthr. Cartil. 30:184–195, 2022. https://doi.org/10.1016/j.joca.2021.04.020.

    Article  CAS  Google Scholar 

  7. Arcaute, K., B. K. Mann, and R. B. Wicker. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann. Biomed. Eng. 34:1429–1441, 2006. https://doi.org/10.1007/s10439-006-9156-y.

    Article  PubMed  Google Scholar 

  8. Aziz, A. H., K. Eckstein, V. L. Ferguson, and S. J. Bryant. The effects of dynamic compressive loading on human mesenchymal stem cell osteogenesis in the stiff layer of a bilayer hydrogel. J. Tissue Eng. Regener. Med. 13:946–959, 2019. https://doi.org/10.1002/term.2827.

    Article  CAS  Google Scholar 

  9. Bartell, L. R., L. A. Fortier, L. J. Bonassar, and I. Cohen. Measuring microscale strain fields in articular cartilage during rapid impact reveals thresholds for chondrocyte death and a protective role for the superficial layer. J. Biomech. 48:3440–3446, 2015. https://doi.org/10.1016/j.jbiomech.2015.05.035.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Beck, E. C., M. Barragan, M. H. Tadros, S. H. Gehrke, and M. S. Detamore. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Acta Biomater. 38:94–105, 2016. https://doi.org/10.1016/j.actbio.2016.04.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bennett, J. Measuring UV curing parameters of commercial photopolymers used in additive manufacturing. Addit. Manuf. 18:203–212, 2017. https://doi.org/10.1016/j.addma.2017.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bittner, S. M., B. T. Smith, L. Diaz-Gomez, C. D. Hudgins, A. J. Melchiorri, D. W. Scott, J. P. Fisher, and A. G. Mikos. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater. 90:37–48, 2019. https://doi.org/10.1016/j.actbio.2019.03.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bobyn, J. D., R. M. Pilliar, H. U. Cameron, and G. C. Weatherly. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin. Orthop. Relat. Res. 150:263–270, 1980.

    Article  Google Scholar 

  14. Bracaglia, L. G., B. T. Smith, E. Watson, N. Arumugasaamy, A. G. Mikos, and J. P. Fisher. 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater. 56:3–13, 2017. https://doi.org/10.1016/j.actbio.2017.03.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bryant, S. J., and K. S. Anseth. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59:63–72, 2002. https://doi.org/10.1002/jbm.1217.

    Article  CAS  PubMed  Google Scholar 

  16. Burdis, R., F. Chariyev-Prinz, and D. J. Kelly. Bioprinting of biomimetic self-organised cartilage with a supporting joint fixation device. Biofabrication 2021. https://doi.org/10.1088/1758-5090/ac36be.

    Article  PubMed  Google Scholar 

  17. Carter, D. R., G. S. Beaupré, M. Wong, R. L. Smith, T. P. Andriacchi, and D. J. Schurman. The mechanobiology of articular cartilage development and degeneration. Clin. Orthop. Relat. Res.® 427:S69, 2004. https://doi.org/10.1097/01.blo.0000144970.05107.7e.

    Article  Google Scholar 

  18. Chu, T. C., W. F. Ranson, and M. A. Sutton. Applications of digital-image-correlation techniques to experimental mechanics. Exp. Mech. 25:232–244, 1985. https://doi.org/10.1007/BF02325092.

    Article  Google Scholar 

  19. Critchley, S., E. J. Sheehy, G. Cunniffe, P. Diaz-Payno, S. F. Carroll, O. Jeon, E. Alsberg, P. A. J. Brama, and D. J. Kelly. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Acta Biomater. 113:130–143, 2020. https://doi.org/10.1016/j.actbio.2020.05.040.

    Article  CAS  PubMed  Google Scholar 

  20. Daly, A. C., F. E. Freeman, T. Gonzalez-Fernandez, S. E. Critchley, J. Nulty, and D. J. Kelly. 3D bioprinting for cartilage and osteochondral tissue engineering. Adv. Healthc. Mater. 2017. https://doi.org/10.1002/adhm.201700298.

    Article  PubMed  Google Scholar 

  21. Daly, A. C., and D. J. Kelly. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers. Biomaterials 197:194–206, 2019. https://doi.org/10.1016/j.biomaterials.2018.12.028.

    Article  CAS  PubMed  Google Scholar 

  22. Deshpande, V. S., N. A. Fleck, and M. F. Ashby. Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49:1747–1769, 2001. https://doi.org/10.1016/S0022-5096(01)00010-2.

    Article  CAS  Google Scholar 

  23. Diaz-Rodriguez, P., J. D. Erndt-Marino, T. Gharat, D. J. Munoz Pinto, S. Samavedi, R. Bearden, M. A. Grunlan, W. B. Saunders, and M. S. Hahn. Toward zonally tailored scaffolds for osteochondral differentiation of synovial mesenchymal stem cells. J. Biomed. Mater. Res. B 107:2019–2029, 2019. https://doi.org/10.1002/jbm.b.34293.

    Article  CAS  Google Scholar 

  24. Ding, M., C. C. Danielsen, and I. Hvid. Bone density does not reflect mechanical properties in early-stage arthrosis. Acta Orthop. Scand. 72:181–185, 2001. https://doi.org/10.1080/000164701317323444.

    Article  CAS  PubMed  Google Scholar 

  25. Doyle, S. E., F. Snow, S. Duchi, C. D. O’Connell, C. Onofrillo, C. Di Bella, and E. Pirogova. 3D printed multiphasic scaffolds for osteochondral repair: challenges and opportunities. Int. J. Mol. Sci. 22:12420, 2021. https://doi.org/10.3390/ijms222212420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eckstein, K. N. Micro-truss models for 3D printed scaffold reinforcements. OSF. 2024. https://osf.io/J93DB/. https://doi.org/10.17605/OSF.IO/J93DB.

  27. Ege, D., and V. Hasirci. Is 3D printing promising for osteochondral tissue regeneration? ACS Appl. Bio Mater. 6:1431–1444, 2023. https://doi.org/10.1021/acsabm.3c00093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Erickson, A. E., J. Sun, S. K. Lan Levengood, S. Swanson, F.-C. Chang, C. T. Tsao, and M. Zhang. Chitosan-based composite bilayer scaffold as an in vitro osteochondral defect regeneration model. Biomed. Microdevices 21:34, 2019. https://doi.org/10.1007/s10544-019-0373-1.

    Article  CAS  PubMed  Google Scholar 

  29. Golebiowska, A. A., and S. P. Nukavarapu. Bio-inspired zonal-structured matrices for bone-cartilage interface engineering. Biofabrication 14:025016, 2022. https://doi.org/10.1088/1758-5090/ac5413.

    Article  CAS  Google Scholar 

  30. Griffin, D. J., E. D. Bonnevie, D. J. Lachowsky, J. C. A. Hart, H. D. Sparks, N. Moran, G. Matthews, A. J. Nixon, I. Cohen, and L. J. Bonassar. Mechanical characterization of matrix-induced autologous chondrocyte implantation (MACI®) grafts in an equine model at 53 weeks. J. Biomech. 48:1944–1949, 2015. https://doi.org/10.1016/j.jbiomech.2015.04.010.

    Article  PubMed  Google Scholar 

  31. Guilak, F., A. Ratcliffe, and V. C. Mow. Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J. Orthop. Res. 13:410–421, 1995. https://doi.org/10.1002/jor.1100130315.

    Article  CAS  PubMed  Google Scholar 

  32. Guo, T., J. Lembong, L. G. Zhang, and J. P. Fisher. Three-dimensional printing articular cartilage: recapitulating the complexity of native tissue. Tissue Eng. B 23:225–236, 2017. https://doi.org/10.1089/ten.TEB.2016.0316.

    Article  Google Scholar 

  33. Hanke, M. S., M. J. B. Keel, J. L. Cullmann, K. A. Siebenrock, and J. D. Bastian. Transfer of osteochondral shell autografts to salvage femoral head impaction injuries in hip trauma patients. Injury 51:711–718, 2020. https://doi.org/10.1016/j.injury.2020.01.037.

    Article  PubMed  Google Scholar 

  34. Huey, D. J., J. C. Hu, and K. A. Athanasiou. Unlike bone, cartilage regeneration remains elusive. Science 338:917–921, 2012. https://doi.org/10.1126/science.1222454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Itälä, A. I., H. O. Ylänen, C. Ekholm, K. H. Karlsson, and H. T. Aro. Pore diameter of more than 100 μm is not requisite for bone ingrowth in rabbits. J. Biomed. Mater. Res. 58:679–683, 2001. https://doi.org/10.1002/jbm.1069.

    Article  PubMed  Google Scholar 

  36. Johannes, K. G., K. N. Calahan, Y. Qi, R. Long, and M. E. Rentschler. Three-dimensional microscale imaging and measurement of soft material contact interfaces under quasi-static normal indentation and shear. Langmuir 35:10725–10733, 2019. https://doi.org/10.1021/acs.langmuir.9b00830.

    Article  CAS  PubMed  Google Scholar 

  37. Jurvelin, J. S., M. D. Buschmann, and E. B. Hunziker. Optical and mechanical determination of Poisson’s ratio of adult bovine humeral articular cartilage. J. Biomech. 30:235–241, 1997. https://doi.org/10.1016/s0021-9290(96)00133-9.

    Article  CAS  PubMed  Google Scholar 

  38. Kaur, M., T. G. Yun, S. M. Han, E. L. Thomas, and W. S. Kim. 3D printed stretching-dominated micro-trusses. Mater. Des. 134:272–280, 2017. https://doi.org/10.1016/j.matdes.2017.08.061.

    Article  CAS  Google Scholar 

  39. Kilian, D., T. Ahlfeld, A. R. Akkineni, A. Bernhardt, M. Gelinsky, and A. Lode. 3D bioprinting of osteochondral tissue substitutes—in vitro-chondrogenesis in multi-layered mineralized constructs. Sci. Rep. 10:8277, 2020. https://doi.org/10.1038/s41598-020-65050-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kinneberg, K. R. C., A. Nelson, M. E. Stender, A. H. Aziz, L. C. Mozdzen, B. A. C. Harley, S. J. Bryant, and V. L. Ferguson. Reinforcement of mono- and bi-layer poly(ethylene glycol) hydrogels with a fibrous collagen scaffold. Ann. Biomed. Eng. 43:2618–2629, 2015. https://doi.org/10.1007/s10439-015-1337-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, C., W. Zhang, Y. Nie, D. Jiang, J. Jia, W. Zhang, L. Li, Z. Yao, L. Qin, and Y. Lai. Integrated and bifunctional bilayer 3D printing scaffold for osteochondral defect repair. Adv. Funct. Mater. 33:2214158, 2023. https://doi.org/10.1002/adfm.202214158.

    Article  CAS  Google Scholar 

  42. Little, C. J., N. K. Bawolin, and X. Chen. Mechanical properties of natural cartilage and tissue-engineered constructs. Tissue Eng. B 17:213–227, 2011. https://doi.org/10.1089/ten.TEB.2010.0572.

    Article  CAS  Google Scholar 

  43. Middendorf, J. M., D. J. Griffin, S. Shortkroff, C. Dugopolski, S. Kennedy, J. Siemiatkoski, I. Cohen, and L. J. Bonassar. Mechanical properties and structure-function relationships of human chondrocyte-seeded cartilage constructs after in vitro culture. J. Orthop. Res. 35:2298–2306, 2017. https://doi.org/10.1002/jor.23535.

    Article  CAS  PubMed  Google Scholar 

  44. Moutos, F. T., and F. Guilak. Composite scaffolds for cartilage tissue engineering. Biorheology 45:501–512, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Muralidharan, A., R. R. McLeod, and S. J. Bryant. Hydrolytically degradable poly(β-amino ester) resins with tunable degradation for 3D printing by projection micro-stereolithography. Adv. Funct. Mater. 32:2106509, 2022. https://doi.org/10.1002/adfm.202106509.

    Article  CAS  PubMed  Google Scholar 

  46. Murphy, L., and C. G. Helmick. The impact of osteoarthritis in the United States: a population-health perspective: a population-based review of the fourth most common cause of hospitalization in U.S. adults. Orthop. Nurs. 31:85–91, 2012. https://doi.org/10.1097/NOR.0b013e31824fcd42.

    Article  PubMed  Google Scholar 

  47. Nicodemus, G. D., and S. J. Bryant. The role of hydrogel structure and dynamic loading on chondrocyte gene expression and matrix formation. J. Biomech. 41:1528–1536, 2008. https://doi.org/10.1016/j.jbiomech.2008.02.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Niemeyer, P., J. M. Pestka, P. C. Kreuz, C. Erggelet, H. Schmal, N. P. Suedkamp, and M. Steinwachs. Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am. J. Sports Med. 36:2091–2099, 2008. https://doi.org/10.1177/0363546508322131.

    Article  PubMed  Google Scholar 

  49. Prendergast, P. J., R. Huiskes, and K. Søballe. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 30:539–548, 1997. https://doi.org/10.1016/S0021-9290(96)00140-6.

    Article  CAS  PubMed  Google Scholar 

  50. Rackson, C. M., K. M. Champley, J. T. Toombs, E. J. Fong, V. Bansal, H. K. Taylor, M. Shusteff, and R. R. McLeod. Object-space optimization of tomographic reconstructions for additive manufacturing. Addit. Manuf. 48:102367, 2021. https://doi.org/10.1016/j.addma.2021.102367.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schinagl, R. M., D. Gurskis, A. C. Chen, and R. L. Sah. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J. Orthop. Res. 15:499–506, 1997. https://doi.org/10.1002/jor.1100150404.

    Article  CAS  PubMed  Google Scholar 

  52. Schipani, R., S. Scheurer, R. Florentin, S. E. Critchley, and D. J. Kelly. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites. Biofabrication 12:035011, 2020. https://doi.org/10.1088/1758-5090/ab8708.

    Article  CAS  PubMed  Google Scholar 

  53. Schoonraad, S. A., K. M. Fischenich, K. N. Eckstein, V. Crespo-Cuevas, L. M. Savard, A. Muralidharan, A. A. Tomaschke, A. C. Uzcategui, M. A. Randolph, R. R. McLeod, V. L. Ferguson, and S. J. Bryant. Biomimetic and mechanically supportive 3D printed scaffolds for cartilage and osteochondral tissue engineering using photopolymers and digital light processing. Biofabrication 13:044106, 2021. https://doi.org/10.1088/1758-5090/ac23ab.

    Article  CAS  Google Scholar 

  54. Schoonraad, S. A., M. L. Trombold, and S. J. Bryant. The effects of stably tethered BMP-2 on MC3T3-E1 preosteoblasts encapsulated in a PEG hydrogel. Biomacromolecules 22:1065–1079, 2021. https://doi.org/10.1021/acs.biomac.0c01085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Singh, J. A., S. Yu, L. Chen, and J. D. Cleveland. Rates of total joint replacement in the United States: future projections to 2020–2040 using the national inpatient sample. J. Rheumatol. 46:1134–1140, 2019. https://doi.org/10.3899/jrheum.170990.

    Article  PubMed  Google Scholar 

  56. Smith, B. T., S. M. Bittner, E. Watson, M. M. Smoak, L. Diaz-Gomez, E. R. Molina, Y. S. Kim, C. D. Hudgins, A. J. Melchiorri, D. W. Scott, K. J. Grande-Allen, J. J. Yoo, A. Atala, J. P. Fisher, and A. G. Mikos. Multimaterial dual gradient three-dimensional printing for osteogenic differentiation and spatial segregation. Tissue Eng. A 26:239–252, 2020. https://doi.org/10.1089/ten.TEA.2019.0204.

    Article  CAS  Google Scholar 

  57. Steinmetz, N. J., E. A. Aisenbrey, K. K. Westbrook, H. J. Qi, and S. J. Bryant. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering. Acta Biomater. 21:142–153, 2015. https://doi.org/10.1016/j.actbio.2015.04.015.

    Article  CAS  PubMed  Google Scholar 

  58. Stender, M. E., R. A. Regueiro, and V. L. Ferguson. A poroelastic finite element model of the bone–cartilage unit to determine the effects of changes in permeability with osteoarthritis. Comput. Methods Biomech. Biomed. Eng. 2017. https://doi.org/10.1080/10255842.2016.1233326.

    Article  Google Scholar 

  59. Taboas, J. M., R. D. Maddox, P. H. Krebsbach, and S. J. Hollister. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24:181–194, 2003. https://doi.org/10.1016/s0142-9612(02)00276-4.

    Article  CAS  PubMed  Google Scholar 

  60. Taniguchi, N., S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, and S. Matsuda. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater. Sci. Eng.: C 59:690–701, 2016. https://doi.org/10.1016/j.msec.2015.10.069.

    Article  CAS  Google Scholar 

  61. Uzcategui, A. C., A. Muralidharan, V. L. Ferguson, S. J. Bryant, and R. R. McLeod. Understanding and improving mechanical properties in 3D printed parts using a dual-cure acrylate-based resin for stereolithography. Adv. Eng. Mater. 20:1800876, 2018. https://doi.org/10.1002/adem.201800876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, C., H. Yue, W. Huang, X. Lin, X. Xie, Z. He, X. He, S. Liu, L. Bai, B. Lu, Y. Wei, and M. Wang. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration. Biofabrication 12:025030, 2020. https://doi.org/10.1088/1758-5090/ab7ab5.

    Article  CAS  PubMed  Google Scholar 

  63. Wilmoth, R. L., V. L. Ferguson, and S. J. Bryant. A 3D, dynamically loaded hydrogel model of the osteochondral unit to study osteocyte mechanobiology. Adv. Healthc. Mater. 9:2001226, 2020. https://doi.org/10.1002/adhm.202001226.

    Article  CAS  Google Scholar 

  64. Xu, T., W. Zhao, J.-M. Zhu, M. Z. Albanna, J. J. Yoo, and A. Atala. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34:130–139, 2013. https://doi.org/10.1016/j.biomaterials.2012.09.035.

    Article  CAS  PubMed  Google Scholar 

  65. Yang, L., Y. Li, S. Wu, P. Chen, H. Wu, J. Su, H. Wang, J. Liu, C. Yan, and Y. Shi. Tailorable and predictable mechanical responses of additive manufactured TPMS lattices with graded structures. Mater. Sci. Eng.: A 843:143109, 2022. https://doi.org/10.1016/j.msea.2022.143109.

    Article  CAS  Google Scholar 

  66. Yodmuang, S., S. L. McNamara, A. B. Nover, B. B. Mandal, M. Agarwal, T.-A.N. Kelly, P. G. Chao, C. Hung, D. L. Kaplan, and G. Vunjak-Novakovic. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater. 11:27–36, 2015. https://doi.org/10.1016/j.actbio.2014.09.032.

    Article  CAS  PubMed  Google Scholar 

  67. Zhu, D., P. Trinh, E. Liu, and F. Yang. Biochemical and mechanical gradients synergize to enhance cartilage zonal organization in 3D. ACS Biomater. Sci. Eng. 4:3561–3569, 2018. https://doi.org/10.1021/acsbiomaterials.8b00775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported with funding from NIH R21/R33 HD090696, R01 AR069060, and the University of Colorado Gates Grubstake Fund. X-ray microscopy and unconfined compression testing was performed at MIMIC, CU Boulder (RRID: SCR_019307). The authors would like to thank Karl Johannes for fabricating the X-ray microscopy micrometer compression fixture.

Author information

Authors and Affiliations

Authors

Contributions

Kevin N. Eckstein: conceptualization, methodology, software, validation, formal analysis, investigation, writing—original draft, visualization. John E. Hergert: methodology, resources, writing—review & editing. Asais Camila Uzcategui: methodology, resources, writing—review & editing. Sarah A. Schoonraad: methodology, resources, writing—review & editing. Stephanie J. Bryant: conceptualization, resources, writing—review & editing, supervision, project administration, funding acquisition. Robert R. McLeod: conceptualization, methodology, supervision, project administration, resources, writing—review & editing, funding acquisition. Virginia L. Ferguson: conceptualization, methodology, resources, writing—review & editing supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Virginia L. Ferguson.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 431 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckstein, K.N., Hergert, J.E., Uzcategui, A.C. et al. Controlled Mechanical Property Gradients Within a Digital Light Processing Printed Hydrogel-Composite Osteochondral Scaffold. Ann Biomed Eng (2024). https://doi.org/10.1007/s10439-024-03516-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10439-024-03516-x

Keywords

Navigation