Skip to main content
Log in

Cryoablation with KCl Solution Enhances Necrosis and Apoptosis of HepG2 Liver Cancer Cells

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cryoablation has become a valuable treatment modality for the management of liver cancer. However, one of the major challenges in cryosurgery is the incomplete cryodestruction near the edge of the iceball. This issue can be addressed by optimizing cryoablation parameters and administering thermotropic drugs prior to the procedure. These drugs help enhance tumor response, thereby strengthening the destruction of the incomplete frozen zone in liver cance. In the present study, the feasibility and effectiveness of a thermophysical agent, KCl solution, were investigated to enhance the cryodestruction of HepG2 human liver cancer cells. All cryoablation parameters were simultaneously optimized in order to significantly improve the effect of cryoablation, resulting in an increase in the lethal temperature from − 25 °C to − 17 °C. Subsequently, it was found that the application of KCl solution prior to freezing significantly decreased cell viability post-thaw compared to cryoablation treatment alone. This effect was attributed to the eutectic effect of KCl solution. Importantly, it was found that the combination of KCl solution and freezing was less effective when applied to LO2 human liver normal cells. The data revealed that the ratio of mRNA levels of Bcl-2 and bax decreased significantly more in HepG2 cells than in LO2 cells when cryoablation was used with KCl solution. In conclusion, the results of this study demonstrate the effectiveness of KCl solution in promoting cryoablation and describe a novel therapeutic model for the treatment of liver cancer that may distinguish between cancer and normal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anwanwan, D., S. K. Singh, S. Singh, V. Saikam, and R. Singh. Challenges in liver cancer and possible treatment approaches. Biochimica et biophysica acta Rev. Cancer. 1873(1):188314, 2020. https://doi.org/10.1016/j.bbcan.2019.188314.

    Article  CAS  Google Scholar 

  2. Li, X., P. Ramadori, D. Pfister, M. Seehawer, L. Zender, and M. Heikenwalder. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat. Rev. Cancer. 21(9):541–557, 2021. https://doi.org/10.1038/s41568-021-00383-9.

    Article  CAS  PubMed  Google Scholar 

  3. Chen, S., Q. Cao, W. Wen, and H. Wang. Targeted therapy for hepatocellular carcinoma: challenges and opportunities. Cancer Lett. 460:1–9, 2019. https://doi.org/10.1016/j.canlet.2019.114428.

    Article  CAS  PubMed  Google Scholar 

  4. Gilles, H., T. Garbutt, and J. Landrum. Hepatocellular carcinoma. Crit Care Nurs Clin N. Am. 34(3):289–301, 2022. https://doi.org/10.1016/j.cnc.2022.04.004.

    Article  Google Scholar 

  5. Yan, Q., F. He, B. Q. Wang, et al. Argon-helium cryoablation for liver carcinoma in high-risk locations: safety and efficacy. Cryobiology. 90:8–14, 2019. https://doi.org/10.1016/j.cryobiol.2019.09.006.

    Article  PubMed  Google Scholar 

  6. Li, X., J. H. Xu, X. Q. Gu, et al. Case report: antiangiogenic therapy plus immune checkpoint inhibitors combined with intratumoral cryoablation for hepatocellular carcinoma. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.740790.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gage, A. A., and J. G. Baust. Cryosurgery for tumors—a clinical overview. Technol. Cancer Res. Treat. 3(2):187–199, 2004. https://doi.org/10.1177/153303460400300212.

    Article  PubMed  Google Scholar 

  8. Gage, A. A., and J. Baust. Mechanisms of tissue injury in cryosurgery. Cryobiology. 37(3):171–186, 1998. https://doi.org/10.1006/cryo.1998.2115.

    Article  CAS  PubMed  Google Scholar 

  9. Orlacchio, A., G. Bazzocchi, D. Pastorelli, et al. Percutaneous cryoablation of small hepatocellular carcinoma with US guidance and CT monitoring: initial experience. Cardiovasc. Interv. Radiol. 31(3):587–594, 2008. https://doi.org/10.1007/s00270-008-9293-9.

    Article  Google Scholar 

  10. Paganini, A. M., A. Rotundo, L. Barchetti, and E. Lezoche. Cryosurgical ablation of hepatic colorectal metastases. Surg. Oncol. 16(Suppl 1):S137–S140, 2007. https://doi.org/10.1016/j.suronc.2007.10.031.

    Article  PubMed  Google Scholar 

  11. Seifert, J. K., and T. Junginger. Cryotherapy for liver tumors: current status, perspectives, clinical results, and review of literature. Technol. Cancer Res. Treat. 3(2):151–163, 2004. https://doi.org/10.1177/153303460400300208.

    Article  CAS  PubMed  Google Scholar 

  12. Subar, D. A., A. J. Sheen, and D. J. Sherlock. Cryoablation for liver tumors—is there clinical utility? MedGenMed: Medsc. Gener. Med. 5(4):19, 2003.

    Google Scholar 

  13. Shah, T. T., U. Arbel, S. Foss, et al. Modeling cryotherapy ice ball dimensions and isotherms in a novel gel-based model to determine optimal cryo-needle configurations and settings for potential use in clinical practice. Urology. 91:234–240, 2016. https://doi.org/10.1016/j.urology.2016.02.012.

    Article  PubMed  Google Scholar 

  14. Littrup, P. J., B. Jallad, V. Vorugu, et al. Lethal isotherms of cryoablation in a phantom study: effects of heat load, probe size, and number. J. Vasc. Interv. Radiol.: JVIR. 20(10):1343–1351, 2009. https://doi.org/10.1016/j.jvir.2009.05.038.

    Article  PubMed  Google Scholar 

  15. Baust, J. M., A. Robilotto, K. K. Snyder, et al. Assessment of cryosurgical device performance using a 3D tissue-engineered cancer model. Technol. Cancer Res. Treat. 16(6):900–909, 2017. https://doi.org/10.1177/1533034617708960.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Seifert, J. K., C. D. Gerharz, F. Mattes, et al. A pig model of hepatic cryotherapy. In vivo temperature distribution during freezing and histopathological changes. Cryobiology. 47(3):214–226, 2003. https://doi.org/10.1016/j.cryobiol.2003.10.007.

    Article  PubMed  Google Scholar 

  17. Larson, T. R., D. W. Rrobertson, A. Corica, and D. G. Bostwick. In vivo interstitial temperature mapping of the human prostate during cryosurgery with correlation to histopathologic outcomes. Urology. 55(4):547–552, 2000. https://doi.org/10.1016/s0090-4295(99)00590-7.

    Article  CAS  PubMed  Google Scholar 

  18. Klossner, D. P., J. M. Baust, R. G. VanBuskirk, A. A. Gage, and J. G. Baust. Cryoablative response of prostate cancer cells is influenced by androgen receptor expression. BJU Int. 101(10):1310–1316, 2008. https://doi.org/10.1111/j.1464-410X.2008.07499.x.

    Article  CAS  PubMed  Google Scholar 

  19. Klossner, D. P., A. T. Robilotto, D. M. Clarke, et al. Cryosurgical technique: assessment of the fundamental variables using human prostate cancer model systems. Cryobiology. 55(3):189–199, 2007. https://doi.org/10.1016/j.cryobiol.2007.07.003.

    Article  PubMed  Google Scholar 

  20. Bischof, J., K. Christov, and B. Rubinsky. A morphological study of cooling rate response in normal and neoplastic human liver tissue: cryosurgical implications. Cryobiology. 30(5):482–492, 1993. https://doi.org/10.1006/cryo.1993.1049.

    Article  CAS  PubMed  Google Scholar 

  21. Clarke, D. M., A. T. Robilotto, E. Rhee, et al. Cryoablation of renal cancer: variables involved in freezing-induced cell death. Technol. Cancer Res. Treat. 6(2):69–79, 2007. https://doi.org/10.1177/153303460700600203.

    Article  PubMed  Google Scholar 

  22. Baust, J. G., K. K. Snyder, K. L. Santucci, A. T. Robilotto, R. G. Van Buskirk, and J. M. Baust. Cryoablation: physical and molecular basis with putative immunological consequences. Int. J. Hyperth. 36(sup1):10–16, 2019. https://doi.org/10.1080/02656736.2019.1647355.

    Article  CAS  Google Scholar 

  23. Tanwar, S., L. Famhawite, and P. R. Verma. Numerical Simulation of bio-heat transfer for cryoablation of regularly shaped tumours in liver tissue using multiprobes. J Therm Biol. 113:103531, 2023. https://doi.org/10.1016/j.jtherbio.2023.103531.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, X., L. Zheng, K. Suleiman, and C. Shu. Combined cryosurgery and cold-responsive drug-loaded nanoparticles to enhance deep-lying tumor therapy: A mathematical model. Int. J. Heat Mass Transf. 165:120663, 2021. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120663.

    Article  CAS  Google Scholar 

  25. Kwak, K., B. Yu, R. J. Lewandowski, and D. H. Kim. Recent progress in cryoablation cancer therapy and nanoparticles mediated cryoablation. Theranostics. 12(5):2175–2204, 2022. https://doi.org/10.7150/thno.67530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ou, W., S. Stewart, A. White, et al. In-situ cryo-immune engineering of tumor microenvironment with cold-responsive nanotechnology for cancer immunotherapy. Nat. Commun. 14(1):392, 2023. https://doi.org/10.1038/s41467-023-36045-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clarke, D. M., J. M. Baust, R. G. Van Buskirk, and J. G. Baust. Chemo-cryo combination therapy: an adjunctive model for the treatment of prostate cancer. Cryobiology. 42(4):274–285, 2001. https://doi.org/10.1006/cryo.2001.2333.

    Article  CAS  PubMed  Google Scholar 

  28. Clarke, D. M., J. M. Baust, R. G. Van Buskirk, and J. G. Baust. Addition of anticancer agents enhances freezing-induced prostate cancer cell death: implications of mitochondrial involvement. Cryobiology. 49(1):45–61, 2004. https://doi.org/10.1016/j.cryobiol.2004.05.003.

    Article  CAS  PubMed  Google Scholar 

  29. Le Pivert, P., R. S. Haddad, A. Aller, et al. Ultrasound guided combined cryoablation and microencapsulated 5-Fluorouracil inhibits growth of human prostate tumors in xenogenic mouse model assessed by luminescence imaging. Technol. Cancer Res. Treat. 3(2):135–142, 2004. https://doi.org/10.1177/153303460400300206.

    Article  PubMed  Google Scholar 

  30. Baust, J. G., J. C. Bischof, S. Jiang-Hughes, et al. Re-purposing cryoablation: a combinatorial “therapy” for the destruction of tissue. Prostate Cancer Prostatic Dis. 18(2):87–95, 2015. https://doi.org/10.1038/pcan.2014.54.

    Article  CAS  PubMed  Google Scholar 

  31. Koushafar, H., L. Pham, C. Lee, and B. Rubinsky. Chemical adjuvant cryosurgery with antifreeze proteins. J. Surg. Oncol. 66(2):114–121, 1997. https://doi.org/10.1002/(sici)1096-9098(199710)66:2%3c114::aid-jso8%3e3.0.co;2-g.

    Article  CAS  PubMed  Google Scholar 

  32. Goel, R., K. Anderson, J. Slaton, et al. Adjuvant approaches to enhance cryosurgery. J. Biomech. Eng. 131(7):074003, 2009. https://doi.org/10.1115/1.3156804.

    Article  PubMed  Google Scholar 

  33. Han, B., A. Iftekhar, and J. C. Bischof. Improved cryosurgery by use of thermophysical and inflammatory adjuvants. Technol. Cancer Res. Treat. 3(2):103–111, 2004. https://doi.org/10.1177/153303460400300203.

    Article  PubMed  Google Scholar 

  34. Wang, C. L., K. Y. Teo, and B. Han. An amino acidic adjuvant to augment cryoinjury of MCF-7 breast cancer cells. Cryobiology. 57(1):52–59, 2008. https://doi.org/10.1016/j.cryobiol.2008.05.007.

    Article  CAS  PubMed  Google Scholar 

  35. Qiu, Q., L. Jiang, H. Zhen, et al. Promotion of HepG2 cell apoptosis by Sedum emarginatum Migo and the mechanism of action. BMC Complement. Med. Ther. 22(1):31, 2022. https://doi.org/10.1186/s12906-022-03503-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang, F., R. Pei, Z. Zhang, et al. Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol. In Vitro. 54:310–316, 2019. https://doi.org/10.1016/j.tiv.2018.10.017.

    Article  CAS  PubMed  Google Scholar 

  37. Claro, S., M. E. Oshiro, R. A. Mortara, et al. γ-Rays-generated ROS induce apoptosis via mitochondrial and cell cycle alteration in smooth muscle cells. Int. J. Radiat. Biol. 90(10):914–927, 2014. https://doi.org/10.3109/09553002.2014.911988.

    Article  CAS  PubMed  Google Scholar 

  38. Livak, K. J., and T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25(4):402–408, 2001. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  39. Baust, J. G., and A. A. Gage. The molecular basis of cryosurgery. BJU Int. 95(9):1187–1191, 2005. https://doi.org/10.1111/j.1464-410X.2005.05502.x.

    Article  PubMed  Google Scholar 

  40. Rubinsky, B. Cryosurgery. Annu. Rev. Biomed. Eng. 2:157–187, 2000. https://doi.org/10.1146/annurev.bioeng.2.1.157.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, W., Z. Huang, X. He, et al. Impacts of trehalose and l-proline on the thermodynamic nonequilibrium phase change and thermal properties of normal saline. Cryobiology. 96:92–98, 2020. https://doi.org/10.1016/j.cryobiol.2020.07.011.

    Article  CAS  PubMed  Google Scholar 

  42. Adams, J. M., and S. Cory. The Bcl-2 protein family: arbiters of cell survival. Science. 281(5381):1322–1326, 1998. https://doi.org/10.1126/science.281.5381.1322.

    Article  CAS  PubMed  Google Scholar 

  43. Guo, X., N. Yang, W. Ji, et al. Mito-bomb: targeting mitochondria for cancer therapy. Adv. Mater. 33(43):e2007778, 2021. https://doi.org/10.1002/adma.202007778.

    Article  CAS  PubMed  Google Scholar 

  44. Herr, I., and K. M. Debatin. Cellular stress response and apoptosis in cancer therapy. Blood. 98(9):2603–2614, 2001. https://doi.org/10.1182/blood.v98.9.2603.

    Article  CAS  PubMed  Google Scholar 

  45. Mala, T., L. Aurdal, L. Frich, et al. Liver tumor cryoablation: a commentary on the need of improved procedural monitoring. Technol. Cancer Res. Treat. 3(1):85–91, 2004. https://doi.org/10.1177/153303460400300110.

    Article  PubMed  Google Scholar 

  46. He, X., Y. Xiao, X. Zhang, et al. Percutaneous tumor ablation: cryoablation facilitates targeting of free epirubicin-ethanol-ioversol solution interstitially coinjected in a rabbit VX2 tumor model. Technol. Cancer Res. Treat. 15(4):597–608, 2016. https://doi.org/10.1177/1533034615593855.

    Article  CAS  PubMed  Google Scholar 

  47. Moore, G. E., R. E. Gerner, and H. A. Franklin. Culture of normal human leukocytes. JAMA. 199(8):519–524, 1967.

    Article  CAS  PubMed  Google Scholar 

  48. Han, B., and J. C. Bischof. Direct cell injury associated with eutectic crystallization during freezing. Cryobiology. 48(1):8–21, 2004. https://doi.org/10.1016/j.cryobiol.2003.11.002.

    Article  PubMed  Google Scholar 

  49. Bischof, J. C., D. Smith, P. V. Pazhayannur, C. Manivel, J. Hulbert, and K. P. Roberts. Cryosurgery of dunning AT-1 rat prostate tumor: thermal, biophysical, and viability response at the cellular and tissue level. Cryobiology. 34(1):42–69, 1997. https://doi.org/10.1006/cryo.1996.1978.

    Article  CAS  PubMed  Google Scholar 

  50. Kumari, C., A. Kumar, S. K. Sarangi, and A. Thirugnanam. Effect of adjuvant on cutaneous cryotherapy. Heat Mass Transf. 55(2):247–260, 2019.

    Article  CAS  Google Scholar 

  51. Lang, F., M. Föller, K. S. Lang, et al. Ion channels in cell proliferation and apoptotic cell death. J. Membr. Biol. 205(3):147–157, 2005. https://doi.org/10.1007/s00232-005-0780-5.

    Article  CAS  PubMed  Google Scholar 

  52. Bilney, A. J., and A. W. Murray. Pro- and anti-apoptotic effects of K+ in HeLa cells. FEBS Lett. 424(3):221–224, 1998. https://doi.org/10.1016/s0014-5793(98)00172-0.

    Article  CAS  PubMed  Google Scholar 

  53. Wang, X., W. P. Liu, X. Zhang, et al. Effect of extracellular K+ on the apoptosis of neural stem cells. Chin. J. Stereotact. Funct. Neurosurg. 04:216–219, 2008.

    Google Scholar 

  54. Zaib, S., A. Hayyat, N. Ali, A. Gul, M. Naveed, and I. Khan. Role of mitochondrial membrane potential and lactate dehydrogenase A in apoptosis. Anti-Cancer Agents Med. Chem. 22(11):2048–2062, 2022. https://doi.org/10.2174/1871520621666211126090906.

    Article  CAS  Google Scholar 

  55. Allemani, C., T. Matsuda, V. Di Carlo, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 391(10125):1023–1075, 2018. https://doi.org/10.1016/s0140-6736(17)33326-3.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Song, X. D., J. J. Zhang, M. R. Wang, W. B. Liu, X. B. Gu, and C. J. Lv. Astaxanthin induces mitochondria-mediated apoptosis in rat hepatocellular carcinoma CBRH-7919 cells. Biol. Pharm. Bull. 34(6):839–844, 2011. https://doi.org/10.1248/bpb.34.839.

    Article  CAS  PubMed  Google Scholar 

  57. Hou, Y., X. Sun, M. Dou, C. Lu, J. Liu, and W. Rao. Cellulose nanocrystals facilitate needle-like ice crystal growth and modulate molecular targeted ice crystal nucleation. Nano Lett. 21(11):4868–4877, 2021. https://doi.org/10.1021/acs.nanolett.1c00514.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project was supported by the Shanghai Collaborative Innovation Center for Tumor Treatment with Energy.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis, original draft preparation: [MC]; review and editing: [WL]; funding acquisition, resources, and supervision: [BL]. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Baolin Liu.

Ethics declarations

Competing interest

No conflicting financial interests exist.

Ethical Approval

Our study did not require an ethical board approval because it did not contain human or animal trials.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Liu, W. & Liu, B. Cryoablation with KCl Solution Enhances Necrosis and Apoptosis of HepG2 Liver Cancer Cells. Ann Biomed Eng (2024). https://doi.org/10.1007/s10439-024-03512-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10439-024-03512-1

Keywords

Navigation