Skip to main content
Log in

In Vitro and In Silico Characterization of the Aggregation of Thrombi on Textured Ventricular Cannula

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The unacceptably high stroke rate associated with HeartMate 3 ventricular assist device (VAD) without signs of adherent pump thrombosis is hypothesized to be the result of the emboli produced by the inflow cannula, that are ingested and ejected from the pump. This in vitro and numerical study aimed to emulate the surface features and supraphysiological shear of a ventricular cannula to provide insight into their effect on thrombogenesis. Human whole blood was perfused at calibrated flow rates in a microfluidic channel to achieve shear rates 1000–7500 s−1, comparable to that experienced on the cannula. The channel contained periodic teeth representative of the rough sintered surface of the HeartMate 3 cannula. The deposition of fluorescently labeled platelets was visualized in real time and analyzed with a custom entity tracking algorithm. Numerical simulations of a multi-constituent thrombosis model were performed to simulate laminar blood flow in the channel. The sustained growth of adherent platelets was observed in all shear conditions (\(p<\) 0.05). However, the greatest deposition was observed at the lower shear rates. The location of deposition with respect to the microfluidic teeth was also found to vary with shear rate. This was confirmed by CFD simulation. The entity tracking algorithm revealed the spatial variation of instances of embolic events. This result suggests that the sintered surface of the ventricular cannula may engender unstable thrombi with a greater likelihood of embolization at supraphysiological shear rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maher, T. R., K. C. Butler, V. L. Poirier, and D. B. Gernes. HeartMate left ventricular assist devices: a multigeneration of implanted blood pumps. Artif. Organs. 25(5):422–426, 2001. https://doi.org/10.1046/j.1525-1594.2001.06756.x.

    Article  CAS  PubMed  Google Scholar 

  2. Starling, R. C., N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N. Engl. J. Med. 370(1):33–40, 2014. https://doi.org/10.1056/NEJMOA1313385.

    Article  CAS  PubMed  Google Scholar 

  3. Cho, S. M., P. Tahsili-Fahadan, A. Kilic, C. W. Choi, R. C. Starling, and K. Uchino. A comprehensive review of risk factor, mechanism, and management of left ventricular assist device-associated stroke. Semin. Neurol. 41(4):411–421, 2021. https://doi.org/10.1055/s-0041-1726328.

    Article  PubMed  Google Scholar 

  4. Rogers, J. G., F. D. Pagani, A. J. Tatooles, G. Bhat, M. S. Slaughter, E. J. Birks, et al. Intrapericardial left ventricular assist device for advanced heart failure. N. Engl. J. Med. 376(5):451–460, 2017. https://doi.org/10.1056/nejmoa1602954.

    Article  PubMed  Google Scholar 

  5. Stehlik, J., and J. K. Kirklin. The long and winding road to an effective left ventricular assist device: the demise of Medtronic’s HVAD. Circulation. 144(7):509–511, 2021. https://doi.org/10.1161/CIRCULATIONAHA.121.056027.

    Article  PubMed  Google Scholar 

  6. Colombo, P. C., M. R. Mehra, D. J. Goldstein, J. D. Estep, C. Salerno, U. P. Jorde, et al. Comprehensive analysis of stroke in the long-term cohort of the MOMENTUM 3 study: a randomized controlled trial of the HeartMate 3 versus the HeartMate II cardiac pump. Circulation. 139(2):155–168, 2019. https://doi.org/10.1161/CIRCULATIONAHA.118.037231.

    Article  PubMed  Google Scholar 

  7. Glass, C. H., A. Christakis, G. A. Fishbein, J. C. Watkins, K. C. Strickland, R. N. Mitchell, et al. Thrombus on the inflow cannula of the HeartWare HVAD: an update. Cardiovasc. Pathol. 38:14–20, 2019. https://doi.org/10.1016/j.carpath.2018.09.002.

    Article  PubMed  Google Scholar 

  8. Mehra, M. R., N. Uriel, Y. Naka, J. C. Cleveland, M. Yuzefpolskaya, C. T. Salerno, et al. A fully magnetically levitated left ventricular assist device—final report. N. Engl. J. Med. 380(17):1618–1627, 2019. https://doi.org/10.1056/NEJMOA1900486.

    Article  PubMed  Google Scholar 

  9. Li, S., J. A. Beckman, R. Cheng, C. Ibeh, C. J. Creutzfeldt, J. Bjelkengren, et al. Comparison of neurologic event rates among HeartMate II, HeartMate 3, and HVAD. ASAIO J. 66(6):620–624, 2020. https://doi.org/10.1097/MAT.0000000000001084.

    Article  PubMed  Google Scholar 

  10. Rowlands, G. W., and J. F. Antaki. High-speed visualization of ingested, ejected, adherent, and disintegrated thrombus in contemporary ventricular assist devices. Artif. Organs. 44(11):E459–E469, 2020. https://doi.org/10.1111/aor.13753.

    Article  CAS  PubMed  Google Scholar 

  11. Griffith, B. P., R. L. Kormos, H. S. Borovetz, K. Litwak, J. F. Antaki, V. L. Poirier, et al. HeartMate II left ventricular assist system: from concept to first clinical use. Ann. Thorac. Surg. 2001. https://doi.org/10.1016/S0003-4975(00)02639-4.

    Article  PubMed  Google Scholar 

  12. Bakir, M. Haemocompatibility of titanium and its alloys. J. Biomater. Appl. 27(1):3–15, 2012. https://doi.org/10.1177/0885328212439615.

    Article  PubMed  Google Scholar 

  13. Jamiolkowski, M. A., J. R. Woolley, M. V. Kameneva, J. F. Antaki, and W. R. Wagner. Real time visualization and characterization of platelet deposition under flow onto clinically relevant opaque surfaces. J. Biomed. Mater. Res. A. 103(4):1303–1311, 2015. https://doi.org/10.1002/jbm.a.35202.

    Article  CAS  PubMed  Google Scholar 

  14. He, W., J. T. Butcher, G. W. Rowlands, and J. F. Antaki. Biological response to sintered titanium in left ventricular assist devices: pseudoneointima, neointima, and pannus. ASAIO J. 2022. https://doi.org/10.1097/mat.0000000000001777.

    Article  PubMed  Google Scholar 

  15. Bagot, C. N., and R. Arya. Virchow and his triad: a question of attribution. Br. J. Haematol. 143(2):180–190, 2008. https://doi.org/10.1111/j.1365-2141.2008.07323.x.

    Article  PubMed  Google Scholar 

  16. Wiegmann, L., B. Thamsen, D. de Zélicourt, M. Granegger, S. Boës, M. Schmid Daners, et al. Fluid dynamics in the HeartMate 3: influence of the artificial pulse feature and residual cardiac pulsation. Artif. Organs. 43(4):363–376, 2019. https://doi.org/10.1111/aor.13346.

    Article  PubMed  Google Scholar 

  17. Méndez Rojano, R., M. Zhussupbekov, and J. F. Antaki. Multi-constituent simulation of thrombus formation at LVAD inlet cannula connection: importance of Virchow’s triad. Artif. Organs 45(9):1014–1023, 2021. https://doi.org/10.1111/aor.13949. arXiv:2011.10479.

  18. Jayaraman, A., J. Kang, J. F. Antaki, and B. J. Kirby. The roles of sub-micron and microscale roughness on shear-driven thrombosis on titanium alloy surfaces. Artif. Organs. 2022. https://doi.org/10.1111/aor.14467.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jamiolkowski, M. A., D. D. Pedersen, W. T. Wu, J. F. Antaki, and W. R. Wagner. Visualization and analysis of biomaterial-centered thrombus formation within a defined crevice under flow. Biomaterials. 96:72–83, 2016. https://doi.org/10.1016/j.biomaterials.2016.04.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Castrodeza, J., C. Ortiz-Bautista, and F. Fernández-Avilés. Continuous-flow left ventricular assist device: current knowledge, complications, and future directions. Cardiol. J. 29(2):293–304, 2022. https://doi.org/10.5603/CJ.a2021.0172.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dasse, K. A., S. D. Chipman, C. N. Sherman, A. H. Levine, and O. H. Frazier. Clinical experience with textured blood contacting surfaces in ventricular assist devices. ASAIO Trans. 33(3):418–425, 1987.

    CAS  PubMed  Google Scholar 

  22. George-Gay, B., and K. Parker. Understanding the complete blood count with differential. J. Perianesth. Nurs. 18(2):96–117, 2003. https://doi.org/10.1053/jpan.2003.50013.

    Article  PubMed  Google Scholar 

  23. Aizawa, H., H. Kawabata, A. Sato, H. Masuki, T. Watanabe, T. Tsujino, et al. A comparative study of the effects of anticoagulants on pure platelet-rich plasma quality and potency. Biomedicines. 8(3):1–14, 2020. https://doi.org/10.3390/biomedicines8030042.

    Article  CAS  Google Scholar 

  24. Johnson, C. A., S. Vandenberghe, A. R. Daly, J. R. Woolley, S. T. Snyder, J. E. Verkaik, et al. Biocompatibility assessment of the first generation PediaFlow pediatric ventricular assist device. Artif. Organs. 35(1):9–21, 2011. https://doi.org/10.1111/j.1525-1594.2010.01023.x.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cohen-Mansfield, J., M. Dakheel-Ali, M. S. Marx, K. Thein, N. G. Regier, et al. Impact of LVAD implantation site on ventricular blood stagnation. Physiol. Behav. 176(1):139–148, 2017. https://doi.org/10.1097/MAT.0000000000000503.Impact.

    Article  Google Scholar 

  26. Chivukula, V. K., J. A. Beckman, A. R. Prisco, T. Dardas, S. Lin, J. W. Smith, et al. Left ventricular assist device inflow cannula angle and thrombosis risk. Circ.: Heart Fail. 11(4):1–8, 2018. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004325.

    Article  Google Scholar 

  27. Chivukula, V. K., J. A. Beckman, A. R. Prisco, S. Lin, T. F. Dardas, R. K. Cheng, et al. Small left ventricular size is an independent risk factor for ventricular assist device thrombosis. ASAIO J. 65(2):152–159, 2019. https://doi.org/10.1097/MAT.0000000000000798.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kang, J., A. Jayaraman, J. F. Antaki, and B. J. Kirby. Extracting mural and volumetric growth patterns of platelet aggregates on engineered surfaces by use of an entity tracking algorithm. ASAIO J. 69(4):382–390, 2023. https://doi.org/10.1097/MAT.0000000000001841.

    Article  CAS  PubMed  Google Scholar 

  29. Zhussupbekov, M., R. M. Rojano, W. T. Wu, and J. F. Antaki. von Willebrand factor unfolding mediates platelet deposition in a model of high-shear thrombosis. Biophys. J. 121(21):4033–4047, 2022. https://doi.org/10.1016/j.bpj.2022.09.040. arXiv:2204.04305.

  30. Wu, W. T., M. A. Jamiolkowski, W. R. Wagner, N. Aubry, M. Massoudi, and J. F. Antaki. Multi-constituent simulation of thrombus deposition. Sci. Rep. 7(1):1–16, 2017. https://doi.org/10.1038/srep42720. arXiv:1601.06717.

  31. Zhussupbekov, M., R. Méndez Rojano, W. T. Wu, M. Massoudi, and J. F. Antaki. A continuum model for the unfolding of von Willebrand factor. Ann. Biomed. Eng. 49(9):2646–2658, 2021. https://doi.org/10.1007/s10439-021-02845-5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ruggeri, Z. M. The role of von Willebrand factor in thrombus formation. Thromb. Res. 2007. https://doi.org/10.1016/j.thromres.2007.03.011.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rana, A., E. Westein, B. Niego, and C. E. Hagemeyer. Shear-dependent platelet aggregation: mechanisms and therapeutic opportunities. Front. Cardiovasc. Med. 6:141, 2019. https://doi.org/10.3389/fcvm.2019.00141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eulert-Grehn, J. J., T. Krabatsch, and E. Potapov. A case of an obstructive inflow thrombus in a HeartMate 3 from the left ventricle into the pump. J. Heart Lung Transplant. 37(1):172–173, 2018. https://doi.org/10.1016/J.HEALUN.2017.07.025.

    Article  PubMed  Google Scholar 

  35. Netuka, I., and M. R. Mehra. Ischemic stroke and subsequent thrombosis within a HeartMate 3 left ventricular assist system: a cautionary tale. J. Heart Lung Transplant. 37(1):170–172, 2018. https://doi.org/10.1016/j.healun.2017.11.002.

    Article  PubMed  Google Scholar 

  36. Han, Q., S. M. Shea, T. Arleo, J. Y. Qian, and D. N. Ku. Thrombogenicity of biomaterials depends on hemodynamic shear rate. Artif. Organs. 46(4):606–617, 2022. https://doi.org/10.1111/aor.14093.

    Article  CAS  PubMed  Google Scholar 

  37. Jamiolkowski, M. A., M. C. Hartung, R. A. Malinauskas, and Q. Lu. An in vitro blood flow loop system for evaluating the thrombogenicity of medical devices and biomaterials. ASAIO J. 2020. https://doi.org/10.1097/MAT.0000000000000958.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhussupbekov, M., W. T. Wu, M. A. Jamiolkowski, M. Massoudi, and J. F. Antaki. Influence of shear rate and surface chemistry on thrombus formation in micro-crevice. J. Biomech. 121:110397, 2021. https://doi.org/10.1016/j.jbiomech.2021.110397.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thierry, B., Y. Merhi, L. Bilodeau, C. Trépanier, and M. Tabrizian. Nitinol versus stainless steel stents: acute thrombogenicity study in an ex vivo porcine model. Biomaterials. 23(14):2997–3005, 2002. https://doi.org/10.1016/S0142-9612(02)00030-3.

    Article  CAS  PubMed  Google Scholar 

  40. Litvinov, R. I., and J. W. Weisel. Blood clot contraction: mechanisms, pathophysiology, and disease. Res. Pract. Thromb. Haemost. 7(1):100023, 2023. https://doi.org/10.1016/j.rpth.2022.100023.

    Article  PubMed  Google Scholar 

  41. Tunströmer, K., L. Faxälv, N. Boknäs, and T. L. Lindahl. Quantification of platelet contractile movements during thrombus formation. Thromb. Haemost. 118(9):1600–1611, 2018. https://doi.org/10.1055/s-0038-1668151.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Savage, B., E. Saldívar, and Z. M. Ruggeri. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell. 84(2):289–297, 1996. https://doi.org/10.1016/S0092-8674(00)80983-6.

    Article  CAS  PubMed  Google Scholar 

  43. Michelson, A. D., M. R. Barnard, L. A. Krueger, A. L. Frelinger, and M. I. Furman. Evaluation of platelet function by flow cytometry. Methods. 21(3):259–270, 2000. https://doi.org/10.1006/meth.2000.1006.

    Article  CAS  PubMed  Google Scholar 

  44. Sharda, A., and R. Flaumenhaft. The life cycle of platelet granules. F1000Research. 7(236):1–12, 2018.

    Google Scholar 

  45. Barić, D. Why pulsatility still matters: a review of current knowledge. Croat. Med. J. 55(6):609–620, 2014. https://doi.org/10.3325/cmj.2014.55.609.

    Article  PubMed  PubMed Central  Google Scholar 

  46. May-Newman, K., N. Marquez-Maya, R. Montes, and S. Salim. The effect of inflow cannula angle on the intraventricular flow field of the left ventricular assist device-assisted heart: an in vitro flow visualization study. ASAIO J. 65(2):139–147, 2019. https://doi.org/10.1097/MAT.0000000000000790.

    Article  PubMed  Google Scholar 

  47. Ortiz, S., V. Vu, R. Montes, and K. May-Newman. Left ventricular flow dynamics with the HeartMate3 left ventricular assist device: effect of inflow cannula position and speed modulation. ASAIO J. 67(12):1301–1311, 2021. https://doi.org/10.1097/MAT.0000000000001523.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to extend our gratitude to the National Institute of Health Grant HL089456 for funding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Antaki.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 487 KB)

Supplementary file 2 (MP4 50827 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Karmakar, A., Kang, J. et al. In Vitro and In Silico Characterization of the Aggregation of Thrombi on Textured Ventricular Cannula. Ann Biomed Eng (2024). https://doi.org/10.1007/s10439-024-03504-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10439-024-03504-1

Keywords

Navigation