Skip to main content
Log in

Muscle-Tendon Unit Length Measurement Using 3D Ultrasound in Passive Conditions: OpenSim Validation and Development of Personalized Models

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study investigated the validity of using OpenSim to measure muscle-tendon unit (MTU) length of the bi-articular lower limb muscles in several postures (shortened, lengthened, a combination of shortened and lengthened involving both joints, neutral and standing) using 3D freehand ultrasound (US), and to propose new personalized models. MTU length was measured on 14 participants and 6 bi-articular muscles (semimembranosus SM, semitendinosus ST, biceps femoris BF, rectus femoris RF, gastrocnemius medialis GM and gastrocnemius lateralis GL), considering 5 to 6 postures. MTU length was computed using OpenSim with three different models: OS (the generic OpenSim scaled model), OS + INSER (OS with personalized 3D US MTU insertions), OS + INSER + PATH (OS with personalized 3D US MTU insertions and path obtained from one posture). Significant differences in MTU length were found between OS and 3D US models for RF, GM and GL (from − 6.3 to 10.9%). Non-significant effects were reported for the hamstrings, notably for the ST (− 1.5%) and BF (− 1.9%), while the SM just crossed the alpha level (− 3.4%, p = 0.049). The OS + INSER model reduced the magnitude of bias by an average of 4% for RF, GM and GL. The OS + INSER + PATH model showed the smallest biases in length estimates, which made them negligible and non-significant for all the MTU (i.e. ≤ 2.2%). A 3D US pipeline was developed and validated to estimate the MTU length from a limited number of measurements. This opens up new perspectives for personalizing musculoskeletal models using low-cost user-friendly devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Alhammoud, M., S. Racinais, S. Dorel, G. Guilhem, C. A. Hautier, and B. Morel. Muscle-tendon unit length changes in knee extensors and flexors during alpine skiing. Sports Biomech. 5:1–12, 2021.

    Google Scholar 

  2. Arnold, A. S., S. S. Blemker, and S. L. Delp. Evaluation of a deformable musculoskeletal model for estimating muscle-tendon lengths during crouch gait. Ann Biomed Eng. 29:263–274, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Barber, L., R. Barrett, and G. Lichtwark. Validation of a freehand 3D ultrasound system for morphological measures of the medial gastrocnemius muscle. J Biomech. 42:1313–1319, 2009.

    Article  PubMed  Google Scholar 

  4. Bland, M. J., and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 327:307–310, 1986.

    Article  Google Scholar 

  5. Blemker, S. S., D. S. Asakawa, G. E. Gold, and S. L. Delp. Image-based musculoskeletal modeling: applications, advances, and future opportunities. J Magn Reson Imaging. 25:441–451, 2007.

    Article  PubMed  Google Scholar 

  6. Damsgaard, M., J. Rasmussen, S. T. Christensen, E. Surma, and M. de Zee. Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul Modell Pract Theory. 14:1100–1111, 2006.

    Article  Google Scholar 

  7. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 54:1940–1950, 2007.

    Article  PubMed  Google Scholar 

  8. Duda, G. N., D. Brand, S. Freitag, W. Lierse, and E. Schneider. Variability of femoral muscle attachments. J Biomech. 29:1185–1190, 1996.

    Article  CAS  PubMed  Google Scholar 

  9. Ehrig, R. M., W. R. Taylor, G. N. Duda, and M. O. Heller. A survey of formal methods for determining the centre of rotation of ball joints. J Biomech. 39:2798–2809, 2006.

    Article  PubMed  Google Scholar 

  10. Fedorov, A., R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J. V. Miller, S. Pieper, and R. Kikinis. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magnetic Reson Imaging. 30:1323–1341, 2012.

    Article  Google Scholar 

  11. Frouin, A., H. Guenanten, G. L. Sant, L. Lacourpaille, M. Liebard, A. Sarcher, P. J. McNair, R. Ellis, and A. Nordez. Validity and reliability of 3-D ultrasound imaging to measure hamstring muscle and tendon volumes. Ultrasound Med Biol. 49(6):1457–1464, 2023.

    Article  PubMed  Google Scholar 

  12. Grieve, D., S. Pheasant, and P. Cavanagh. Prediction of gastrocnemius length from knee and ankle joint posture. Biomechanics. 58:405–412, 1978.

    Google Scholar 

  13. Habersack, A., T. Zussner, S. Thaller, M. Tilp, M. Svehlik, and A. Kruse. Validity and reliability of a novel 3D ultrasound approach to assess static lengths and the lengthening behavior of the gastrocnemius medialis muscle and the Achilles tendon in vivo. Knee Surg Sports Traumatol Arthrosc. 30:4203–4213, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hawkins, D., and M. L. Hull. A method for determining lower extremity muscle-tendon lengths during flexion/extension movements. J Biomech. 23:487–494, 1990.

    Article  CAS  PubMed  Google Scholar 

  15. Ishikawa, M., and P. V. Komi. Effects of different dropping intensities on fascicle and tendinous tissue behavior during stretch-shortening cycle exercise. J Appl Physiol. 96:848–852, 2004.

    Article  PubMed  Google Scholar 

  16. Koller, W., A. Baca, and H. Kainz. Impact of scaling errors of the thigh and shank segments on musculoskeletal simulation results. Gait Posture. 87:65–74, 2021.

    Article  PubMed  Google Scholar 

  17. Kurokawa, S., T. Fukunaga, and S. Fukashiro. Behavior of fascicles and tendinous structures of human gastrocnemius during vertical jumping. J Appl Physiol. 90:1349–1358, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. Lichtwark, G. A., K. Bougoulias, and A. M. Wilson. Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J Biomech. 40:157–164, 2007.

    Article  CAS  PubMed  Google Scholar 

  19. Modenese, L., E. Ceseracciu, M. Reggiani, and D. G. Lloyd. Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique. J Biomech. 49:141–148, 2016.

    Article  PubMed  Google Scholar 

  20. Obst, S. J., R. Newsham-West, and R. S. Barrett. In vivo measurement of human achilles tendon morphology using freehand 3-d ultrasound. Ultrasound Med Biol. 40:62–70, 2014.

    Article  PubMed  Google Scholar 

  21. Persad, L. S., F. Ates, A. Y. Shin, R. L. Lieber, and K. R. Kaufman. Measuring and modeling in vivo human gracilis muscle-tendon unit length. J Biomech.125:110592, 2021.

    Article  PubMed  Google Scholar 

  22. Raabe, M. E., and A. M. W. Chaudhari. An investigation of jogging biomechanics using the full-body lumbar spine model: model development and validation. J Biomech. 49:1238–1243, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Retailleau, M., and F. Colloud. New insights into lumbar flexion tests based on inverse and direct kinematic musculoskeletal modeling. J Biomech.105:109782, 2020.

    Article  PubMed  Google Scholar 

  24. Scheys, L., D. Loeckx, A. Spaepen, P. Suetens, and I. Jonkers. Atlas-based non-rigid image registration to automatically define line-of-action muscle models: a validation study. J Biomech. 42:565–572, 2009.

    Article  PubMed  Google Scholar 

  25. Seth, A., J. L. Hicks, T. K. Uchida, A. Habib, C. L. Dembia, J. J. Dunne, C. F. Ong, M. S. DeMers, A. Rajagopal, M. Millard, S. R. Hamner, E. M. Arnold, J. R. Yong, S. K. Lakshmikanth, M. A. Sherman, J. P. Ku, and S. L. Delp. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput Biol.14:e1006223, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Uchida, T. K., and A. Seth. Conclusion or Illusion: quantifying uncertainty in inverse analyses from marker-based motion capture due to errors in marker registration and model scaling. Front Bioeng Biotechnol.10:874725, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ungi, T., A. Lasso, and G. Fichtinger. Open-source platforms for navigated image-guided interventions. Med Image Anal. 33:181–186, 2016.

    Article  PubMed  Google Scholar 

  28. Woodley, S. J., and S. R. Mercer. Hamstring Muscles: Architecture and Innervation. Cells Tissues Organs. 179:125–141, 2005.

    Article  PubMed  Google Scholar 

  29. Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed. Eng. 17:359–411, 1989.

    CAS  PubMed  Google Scholar 

  30. Zhong, S., B. Wu, M. Wang, X. Wang, Q. Yan, X. Fan, Y. Hu, Y. Han, and Y. Li. The anatomical and imaging study of pes anserinus and its clinical application. Medicine.97:e0352, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Programme Prioritaire de Recherche Sport de Très Haute Performance” (“France 2030” Investment plan) and specifically the project “Très haute performance en cyclisme et en aviron 2024 (THPCA2024)”. Maëva Retailleau was supported by a post-doctoral contract of the THPCA2024 project. Hugo Guenanten was supported by a PhD scholarship from the French National Center for Scientific Research (CNRS - GDR Sport & Activité Physique).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Nordez.

Ethics declarations

Conflict of interest

The authors state that they have no financial or personal affiliations with individuals or organizations that may have exerted inappropriate influence on this study.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guenanten, H., Retailleau, M., Dorel, S. et al. Muscle-Tendon Unit Length Measurement Using 3D Ultrasound in Passive Conditions: OpenSim Validation and Development of Personalized Models. Ann Biomed Eng 52, 997–1008 (2024). https://doi.org/10.1007/s10439-023-03436-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03436-2

Keywords

Navigation