Skip to main content
Log in

Development of Novel Sutureless Balloon Expandable Fetal Heart Valve Device Using Absorbable Polycaprolactone Leaflets

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Congenital heart disease (CHD) accounts for nearly one-third of all congenital defects, and patients often require repeated heart valve replacements throughout their lives, due to failed surgical repairs and lack of durability of bioprosthetic valve implants. This objective of this study is to develop and in vitro test a fetal transcatheter pulmonary valve replacement (FTPVR) using sutureless techniques to attach leaflets, as an option to correct congenital defects such as pulmonary atresia with intact ventricular septum (PA/IVS), in utero. A balloon expandable design was analyzed using computational simulations to identify areas of failure. Five manufactured valves were assembled using the unique sutureless approach and tested in the fetal right heart simulator (FRHS) to evaluate hemodynamic characteristics. Computational simulations showed that the commissural loads on the leaflet material were significantly reduced by changing the attachment techniques. Hemodynamic analysis showed an effective orifice area of 0.08 cm2, a mean transvalvular pressure gradient of 7.52 mmHg, and a regurgitation fraction of 8.42%, calculated over 100 consecutive cardiac cycles. In conclusion, the FTPVR exhibited good hemodynamic characteristics, and studies with biodegradable stent materials are underway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5:
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

PA/IVS:

Pulmonary atresia with intact ventricular septum

TEHV:

Tissue engineered heart valve

FTPVR:

Fetal transcatheter pulmonary valve replacement

TAVR:

Transcatheter aortic valve replacement

Co–Cr:

Cobalt–chromium

FE:

Finite element

PCL:

Polycaprolactone

FRHS:

Fetal right heart simulator

EOA:

Effective orifice area

RF:

Regurgitation fraction

CV:

Closing volume

LV:

Leakage volume

FV:

Forward volume

References

  1. van der Linde, D., E. E. M. Konings, M. A. Slager, M. Witsenburg, W. A. Helbing, J. J. M. Takkenberg, and J. W. Roos-Hesselink. Birth prevalence of congenital heart disease worldwide a systematic review and meta-analysis. J. Am. Coll. Cardiol. 58(21):2241–2247, 2011. https://doi.org/10.1016/j.jacc.2011.08.025.

    Article  PubMed  Google Scholar 

  2. Farmer, D., N. Sitkin, K. Lofberg, P. Donkor, and D. Ozgediz. Surgical interventions for congenital anomalies. In: Essential Surgery: Disease Control Priorities, Vol. 1, 3rd ed., edited by H. T. Debas, P. Donkor, A. Gawande, D. T. Jamison, M. E. Kruk, and C. N. Mock. Washington: The International Bank for Reconstruction and Development/The World Bank, 2015.

    Google Scholar 

  3. Gorla, S. R., and A. P. Singh. Pulmonary Atresia With Intact Ventricular Septum. Treasure Island: StatPearls, 2022.

  4. Najm, H. K., W. G. Williams, J. G. Coles, I. M. Rebeyka, and R. M. Freedom. Pulmonary atresia with intact ventricular septum: results of the Fontan procedure. Ann Thorac. Surg. 63(3):669–675, 1997. https://doi.org/10.1016/s0003-4975(96)01366-5.

    Article  CAS  PubMed  Google Scholar 

  5. Bautista-Hernandez, V., B. S. Hasan, D. M. Harrild, A. Prakash, D. Porras, J. E. Mayer Jr., P. J. del Nido, and F. A. Pigula. Late pulmonary valve replacement in patients with pulmonary atresia and intact ventricular septum: a case-matched study. Ann. Thorac. Surg. 91(2):555–560, 2011. https://doi.org/10.1016/j.athoracsur.2010.09.024.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Freeman, J. E., S. Y. DeLeon, S. Lai, E. A. Fisher, E. P. Ow, and R. Pifarre. Right ventricle-to-aorta conduit in pulmonary atresia with intact ventricular septum and coronary sinusoids. Ann. Thorac. Surg. 56(6):1393–1395, 1993. https://doi.org/10.1016/0003-4975(93)90691-a.

    Article  CAS  PubMed  Google Scholar 

  7. Manavitehrani, I., P. Ebrahimi, I. Yang, S. Daly, A. Schindeler, A. Saxena, D. G. Little, D. F. Fletcher, F. Dehghani, and D. S. Winlaw. Current challenges and emergent technologies for manufacturing artificial right ventricle to pulmonary artery (RV-PA) cardiac conduits. Cardiovasc. Eng. Technol. 10(2):205–215, 2019. https://doi.org/10.1007/s13239-019-00406-5.

    Article  PubMed  Google Scholar 

  8. Selcuk, A., Y. Kilic, O. Korun, O. Yurdakok, M. Cicek, H. F. Altin, Y. Altuntas, E. H. Yilmaz, A. Sasmazel, and N. A. Aydemir. High incidence of fever in patients after biointegral pulmonic valved conduit implantation. J. Card Surg. 36(9):3147–3152, 2021. https://doi.org/10.1111/jocs.15683.

    Article  PubMed  Google Scholar 

  9. Williams, D. F., D. Bezuidenhout, J. de Villiers, P. Human, and P. Zilla. Long-term stability and biocompatibility of pericardial bioprosthetic heart valves. Front. Cardiovasc. Med.8:728577, 2021. https://doi.org/10.3389/fcvm.2021.728577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kostyunin, A. E., A. E. Yuzhalin, M. A. Rezvova, E. A. Ovcharenko, T. V. Glushkova, and A. G. Kutikhin. Degeneration of bioprosthetic heart valves: update 2020. J. Am. Heart Assoc.9(19):e018506, 2020. https://doi.org/10.1161/JAHA.120.018506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Devanagondi, R., D. Peck, J. Sagi, J. Donohue, S. Yu, S. K. Pasquali, and A. K. Armstrong. Long-term outcomes of balloon valvuloplasty for isolated pulmonary valve stenosis. Pediatr. Cardiol. 38(2):247–254, 2017. https://doi.org/10.1007/s00246-016-1506-4.

    Article  PubMed  Google Scholar 

  12. Boe, B. A., J. D. Zampi, K. F. Kennedy, N. Jayaram, D. Porras, S. R. Foerster, and A. K. Armstrong. Acute success of balloon aortic valvuloplasty in the current era: a national cardiovascular data registry study. JACC Cardiovasc. Interv. 10(17):1717–1726, 2017. https://doi.org/10.1016/j.jcin.2017.08.001.

    Article  PubMed  Google Scholar 

  13. Freud, L. R., D. B. McElhinney, A. C. Marshall, G. R. Marx, K. G. Friedman, P. J. del Nido, S. M. Emani, T. Lafranchi, V. Silva, L. E. Wilkins-Haug, C. B. Benson, J. E. Lock, and W. Tworetzky. Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: postnatal outcomes of the first 100 patients. Circulation. 130(8):638–645, 2014. https://doi.org/10.1161/CIRCULATIONAHA.114.009032.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rao, P. S., M. K. Thapar, and F. Kutayli. Causes of restenosis after balloon valvuloplasty for valvular pulmonary stenosis. Am. J. Cardiol. 62(13):979–982, 1988. https://doi.org/10.1016/0002-9149(88)90909-5.

    Article  CAS  PubMed  Google Scholar 

  15. Ozme, S., A. Celiker, S. Ozkutlu, S. Ozer, and K. Baysal. Percutaneous transluminal balloon pulmonary valvuloplasty: immediate and medium-term results. Turk. J. Pediatr. 32(1):25–31, 1990.

    CAS  PubMed  Google Scholar 

  16. Zakko, J., K. M. Blum, J. D. Drews, Y. L. Wu, H. Hatoum, M. Russell, S. Gooden, M. Heitkemper, O. Conroy, J. Kelly, S. Carey, M. Sacks, K. Texter, E. Ragsdale, J. Strainic, M. Bocks, Y. Wang, L. P. Dasi, A. K. Armstrong, and C. Breuer. Development of tissue engineered heart valves for percutaneous transcatheter delivery in a fetal ovine model. JACC Basic Transl. Sci. 5(8):815–828, 2020. https://doi.org/10.1016/j.jacbts.2020.06.009.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schwarz, E. L., J. M. Kelly, K. M. Blum, K. N. Hor, A. R. Yates, J. C. Zbinden, A. Verma, S. E. Lindsey, A. B. Ramachandra, J. M. Szafron, J. D. Humphrey, T. Shin’oka, A. L. Marsden, and C. K. Breuer. Hemodynamic performance of tissue-engineered vascular grafts in Fontan patients. Npj Regen. Med. 6(1):38, 2021. https://doi.org/10.1038/s41536-021-00157-9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Blum, K. M., J. C. Zbinden, A. B. Ramachandra, S. E. Lindsey, J. M. Szafron, J. W. Reinhardt, M. Heitkemper, C. A. Best, G. J. M. Mirhaidari, Y. C. Chang, A. Ulziibayar, J. Kelly, K. V. Shah, J. D. Drews, J. Zakko, S. Miyamoto, Y. Matsuzaki, R. Iwaki, H. Ahmad, R. Daulton, D. Musgrave, M. G. Wiet, E. Heuer, E. Lawson, E. Schwarz, M. R. McDermott, R. Krishnamurthy, R. Krishnamurthy, K. Hor, A. K. Armstrong, B. A. Boe, D. P. Berman, A. J. Trask, J. D. Humphrey, A. L. Marsden, T. Shinoka, and C. K. Breuer. Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth. Commun. Med. (Lond.). 2:3, 2022. https://doi.org/10.1038/s43856-021-00063-7.

    Article  PubMed  Google Scholar 

  19. Drews, J. D., V. K. Pepper, C. A. Best, J. M. Szafron, J. P. Cheatham, A. R. Yates, K. N. Hor, J. C. Zbinden, Y. C. Chang, G. J. M. Mirhaidari, A. B. Ramachandra, S. Miyamoto, K. M. Blum, E. A. Onwuka, J. Zakko, J. Kelly, S. L. Cheatham, N. King, J. W. Reinhardt, T. Sugiura, H. Miyachi, Y. Matsuzaki, J. Breuer, E. D. Heuer, T. A. West, T. Shoji, D. Berman, B. A. Boe, J. Asnes, M. Galantowicz, G. Matsumura, N. Hibino, A. L. Marsden, J. S. Pober, J. D. Humphrey, T. Shinoka, and C. K. Breuer. Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci. Transl. Med. 12(537):eaax6919, 2020. https://doi.org/10.1126/scitranslmed.aax6919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heitkemper, M., H. Hatoum, and L. P. Dasi. In vitro hemodynamic assessment of a novel polymeric transcatheter aortic valve. J. Mech. Behav. Biomed. 98:163–171, 2019. https://doi.org/10.1016/j.jmbbm.2019.06.016.

    Article  CAS  Google Scholar 

  21. Hatoum, H., S. Gooden, M. Heitkemper, K. M. Blum, J. Zakko, M. Bocks, T. Yi, Y. L. Wu, Y. D. Wang, C. K. Breuer, and L. P. Dasi. Fetal transcatheter trileaflet heart valve hemodynamics: implications of scaling on valve mechanics and turbulence. Ann. Biomed. Eng. 48(6):1683–1693, 2020. https://doi.org/10.1007/s10439-020-02475-3.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Johnson, P., D. J. Maxwell, M. J. Tynan, and L. D. Allan. Intracardiac pressures in the human fetus. Heart. 84(1):59–63, 2000. https://doi.org/10.1136/heart.84.1.59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoganathan, A. P., Z. M. He, and S. C. Jones. Fluid mechanics of heart valves. Annu. Rev. Biomed. Eng. 6:331–362, 2004. https://doi.org/10.1146/annurev.bioeng.6.040803.140111.

    Article  CAS  PubMed  Google Scholar 

  24. Hui, S., F. Mahmood, and R. Matyal. Aortic valve area-technical communication: continuity and gorlin equations revisited. J. Cardiothorac. Vasc. Anesth. 32(6):2599–2606, 2018. https://doi.org/10.1053/j.jvca.2018.05.027.

    Article  PubMed  Google Scholar 

  25. Leroux, A., T. Ngoc Nguyen, A. Rangel, I. Cacciapuoti, D. Duprez, D. G. Castner, and V. Migonney. Long-term hydrolytic degradation study of polycaprolactone films and fibers grafted with poly(sodium styrene sulfonate): mechanism study and cell response. Biointerphases.15(6):061006, 2020. https://doi.org/10.1116/6.0000429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported with funds from Additional Ventures (Grant No. GR00006544). The authors acknowledge the use of ABAQUS software provided through the Cardiovascular Fluid Mechanics Laboratory at Georgia Tech.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher K. Breuer or Lakshmi Prasad Dasi.

Additional information

Associate Editor Elizabeth Cosgriff-Hernandez oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, S.S., Bui, H.T., Farnan, A. et al. Development of Novel Sutureless Balloon Expandable Fetal Heart Valve Device Using Absorbable Polycaprolactone Leaflets. Ann Biomed Eng 52, 386–395 (2024). https://doi.org/10.1007/s10439-023-03386-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03386-9

Keywords

Navigation