Skip to main content
Log in

Fibrin Hydrogel Layer-Anchored Pericardial Matrix Prevents Epicardial Adhesion in the Severe Heart Adhesion-Induced Miniature Pig Model

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Postoperative adhesion is a very common and serious complication that occurs frequently in cardiac surgery. The purpose of this study was to evaluate the efficacy of a fibrin hydrogel layer-anchored decellularized pericardial matrix in preventing pericardial adhesions in a miniature pig model with a myocardial injury. Fibrin hydrogel layer-anchored decellularized pericardial matrix was prepared by spraying a mixture of fibrinogen and thrombin on a fibrinogen-doped decellularized pericardium. Cardiac injury was generated by abrading and desiccating the epicardial surface of a miniature pig to induce severe postoperative adhesions. The adhesion between the epicardial surface and fibrin hydrogel layer-anchored decellularized pericardial matrix in three different regions (left outer, front, and right outer) was evaluated macroscopically one month after surgery. The fibrin hydrogel layer-anchored decellularized pericardial matrix showed significantly less adhesion than an autologous pericardium (0.2 ± 0.7 in DPM-FHG0.5 and 0.4 ± 0.8 in DPM-FHG1, p < 0.01) and expanded polytetrafluoroethylene (ePTFE) (1.6 ± 0.5, p < 0.05). The fibrin hydrogel concentration had no effect on preventing postoperative adhesion. A thinner fibrin hydrogel layer was observed on the decellularized pericardial matrix one month after surgery; however, the inside of the matrix was filled with fibrin hydrogel. Fibrin hydrogel layer-anchored decellularized pericardial matrix prevented postoperative epicardial adhesions in a miniature pig model. Our findings suggest that pericardial closure using a fibrin hydrogel layer-anchored decellularized pericardial matrix is a promising method for preventing adverse outcomes in reoperative surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Arnold, P. B., C. W. Green, P. A. Foresman, and G. T. Rodeheaver. Evaluation of resorbable barriers for preventing surgical adhesions. Fertil Steril. 73:157–161, 2000. https://doi.org/10.1016/s0015-0282(99)00464-1.

    Article  CAS  PubMed  Google Scholar 

  2. Bahn, C. H., L. S. Annest, and M. Miyamoto. Pericardial closure. Am J Surg. 151:612–615, 1986.

    Article  CAS  PubMed  Google Scholar 

  3. Bel, A., M. Ricci, J. Piquet, P. Bruneval, M. C. Perier, C. Gagnieu, J. N. Fabiani, and P. Menasché. Prevention of postcardiopulmonary bypass pericardial adhesions by a new resorbable collagen membrane. Interact Cardiovasc Thorac Surg. 14:469–473, 2012. https://doi.org/10.1093/icvts/ivr159.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cannata, A., D. Petrella, C. F. Russo, G. Bruschi, P. Fratto, M. Gambacorta, and L. Martinelli. Postsurgical intrapericardial adhesions: mechanisms of formation and prevention. Ann Thorac Surg. 95:1818–1826, 2013. https://doi.org/10.1016/j.athoracsur.2012.11.020.

    Article  PubMed  Google Scholar 

  5. Chen, Z., J. Zheng, J. Zhang, and S. Li. A novel bioabsorbable pericardial membrane substitute to reduce postoperative pericardial adhesions in a rabbit model. Interact Cardiovasc Thorac Surg. 21:565–572, 2015. https://doi.org/10.1093/icvts/ivv213.

    Article  PubMed  Google Scholar 

  6. Erikssen, G., K. Liestøl, E. Seem, S. Birkeland, K. J. Saatvedt, T. N. Hoel, G. Døhlen, H. Skulstad, J. L. Svennevig, E. Thaulow, et al. Achievements in congenital heart defect surgery: a prospective, 40-year study of 7038 patients. Circulation. 131:337–346, 2015. https://doi.org/10.1161/CIRCULATIONAHA.114.012033.

    Article  PubMed  Google Scholar 

  7. Fujita, M., G. M. Policastro, A. Burdick, H. T. Lam, J. L. Ungerleider, R. L. Braden, D. Huang, K. G. Osborn, J. H. Omens, M. M. Madani, et al. Preventing post-surgical cardiac adhesions with a catechol-functionalized oxime hydrogel. Nat Commun. 12:3764, 2021. https://doi.org/10.1038/s41467-021-24104-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Funamoto, S., Y. Hashimoto, A. Kishida, and J. Negishi. A fibrin-coated pericardial extracellular matrix prevented heart adhesion in a rat model. J Biomed Mater Res B Appl Biomater. 107:1088–1094, 2019. https://doi.org/10.1002/jbm.b.34201.

    Article  CAS  PubMed  Google Scholar 

  9. Gabbay, S. The need for intensive study of pericardial substitution after open heart surgery. ASAIO Trans. 36:789–791, 1990. https://doi.org/10.1097/00002480-199010000-00002.

    Article  CAS  PubMed  Google Scholar 

  10. Hashimoto, Y., A. Yamashita, J. Negishi, T. Kimura, S. Funamoto, and A. Kishida. 4-Arm PEG-functionalized decellularized pericardium for effective prevention of postoperative adhesion in cardiac surgery. ACS Biomater Sci Eng. 8:261–272, 2022. https://doi.org/10.1021/acsbiomaterials.1c00990.

    Article  CAS  PubMed  Google Scholar 

  11. Heydorn, W. H., J. S. Daniel, and C. E. Wade. A new look at pericardial substitutes. J Thorac Cardiovasc Surg. 94:291–296, 1987. https://doi.org/10.1016/S0022-5223(19)36296-8.

    Article  CAS  PubMed  Google Scholar 

  12. Hu, C., F. Tang, Q. Wu, B. Guo, W. A. Long, Y. Ruan, and L. Li. Novel trilaminar polymeric antiadhesion membrane prevents postoperative pericardial adhesion. Ann Thorac Surg. 111:184–189, 2021. https://doi.org/10.1016/j.athoracsur.2020.03.011.

    Article  PubMed  Google Scholar 

  13. Kaushal, S., S. K. Patel, S. K. Goh, A. Sood, B. L. Walker, and C. L. Backer. A novel combination of bioresorbable polymeric film and expanded polytetrafluoroethylene provides a protective barrier and reduces adhesions. J Thorac Cardiovasc Surg. 141:789–795, 2011. https://doi.org/10.1016/j.jtcvs.2010.11.043.

    Article  CAS  PubMed  Google Scholar 

  14. Kheilnezhad, B., and A. Hadjizadeh. A review: progress in preventing tissue adhesions from a biomaterial perspective. Biomater Sci. 9:2850–2873, 2021. https://doi.org/10.1039/d0bm02023k.

    Article  CAS  PubMed  Google Scholar 

  15. Komatsu, K., A. Fujii, and T. Higami. Haemostatic fleece (TachoComb) to prevent intrapleural adhesions after thoracotomy: a rat model. Thorac Cardiovasc Surg. 55:385–390, 2007. https://doi.org/10.1055/s-2007-965174.

    Article  CAS  PubMed  Google Scholar 

  16. Kumthekar, R. N., L. Sinha, J. D. Opfermann, P. Mass, B. C. Clark, C. Yerebakan, and C. I. Berul. Surgical pericardial adhesions do not preclude minimally invasive epicardial pacemaker lead placement in an infant porcine model. J Cardiovasc Electrophysiol. 31:2975–2981, 2020. https://doi.org/10.1111/jce.14724.

    Article  PubMed  Google Scholar 

  17. Kuschel, T. J., A. Gruszka, B. Hermanns-Sachweh, J. Elyakoubi, J. S. Sachweh, J. F. Vázquez-Jiménez, and H. Schnoering. Prevention of postoperative pericardial adhesions with TachoSil. Ann Thorac Surg. 95:183–188, 2013. https://doi.org/10.1016/j.athoracsur.2012.08.057.

    Article  PubMed  Google Scholar 

  18. Lefort, B., J. M. El Arid, A. L. Bouquiaux, N. Soulé, J. Chantreuil, E. Tavernier, A. Chantepie, and P. Neville. Is Seprafilm valuable in infant cardiac redo procedures? J Cardiothorac Surg. 10:47, 2015. https://doi.org/10.1186/s13019-015-0257-2.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu, Z., C. Chang, J. Liu, and Q. Wang. Right ventricular rupture in redo coronary artery bypass grafting. Heart Surg Forum. 23:E685–E688, 2020. https://doi.org/10.1532/hsf.3161.

    Article  PubMed  Google Scholar 

  20. Lunney, J. K., A. Van Goor, K. E. Walker, T. Hailstock, J. Franklin, and C. Dai. Importance of the pig as a human biomedical model. Sci Transl Med. 13:eabd5758, 2021. https://doi.org/10.1126/scitranslmed.abd5758.

    Article  CAS  PubMed  Google Scholar 

  21. Maltais, S., R. J. Widmer, M. R. Bell, R. C. Daly, J. A. Dearani, K. L. Greason, D. L. Joyce, L. D. Joyce, H. V. Schaff, and J. M. Stulak. Reoperation for coronary artery bypass grafting surgery: Outcomes and considerations for expanding interventional procedures. Ann Thorac Surg. 103:1886–1892, 2017. https://doi.org/10.1016/j.athoracsur.2016.09.097.

    Article  PubMed  Google Scholar 

  22. Mutsaers, S. E. The mesothelial cell. Int J Biochem Cell Biol. 36:9–16, 2004. https://doi.org/10.1016/s1357-2725(03)00242-5.

    Article  CAS  PubMed  Google Scholar 

  23. Nkere, U. U., S. A. Whawell, C. E. Sarraf, J. B. Schofield, J. N. Thompson, and K. M. Taylor. Pericardial trauma and adhesions in relation to reoperative cardiac surgery. Thorac Cardiovasc Surg. 43:338–346, 1995. https://doi.org/10.1055/s-2007-1013806.

    Article  CAS  PubMed  Google Scholar 

  24. Okuyama, N., C. Y. Wang, E. A. Rose, K. E. Rodgers, E. Pines, G. S. diZerega, and M. C. Oz. Reduction of retrosternal and pericardial adhesions with rapidly resorbable polymer films. Ann Thorac Surg. 68:913–918, 1999.

    Article  CAS  PubMed  Google Scholar 

  25. Seeger, J. M., L. D. Kaelin, E. M. Staples, Y. Yaacobi, J. C. Bailey, S. Normann, J. W. Burns, and E. P. Goldberg. Prevention of postoperative pericardial adhesions using tissue-protective solutions. J Surg Res. 68:63–66, 1997. https://doi.org/10.1006/jsre.1996.4990.

    Article  CAS  PubMed  Google Scholar 

  26. Steele, P. M., J. H. Chesebro, A. W. Stanson, D. R. Holmes, M. K. Dewanjee, L. Badimon, and V. Fuster. Balloon angioplasty. Natural history of the pathophysiological response to injury in a pig model. Circ Res. 57:105–112, 1985. https://doi.org/10.1161/01.res.57.1.105.

    Article  CAS  PubMed  Google Scholar 

  27. Thompson, J. N., and S. A. Whawell. Pathogenesis and prevention of adhesion formation. Br J Surg. 82:3–5, 1995. https://doi.org/10.1002/bjs.1800820103.

    Article  CAS  PubMed  Google Scholar 

  28. Tsukihara, H., S. Takamoto, K. Kitahori, K. Matsuda, A. Murakami, R. J. Novick, and Y. Suematsu. Prevention of postoperative pericardial adhesions with a novel regenerative collagen sheet. Ann Thorac Surg. 81:650–657, 2006. https://doi.org/10.1016/j.athoracsur.2005.07.022.

    Article  PubMed  Google Scholar 

  29. Yamashita, A., S. Funamoto, Y. Zhang, Y. Hashimoto, and A. Kishida. Rabbit model for evaluation of anti-adhesive materials after open heart surgery. Kyobu Geka. 71:658–663, 2018.

    PubMed  Google Scholar 

  30. Zhang, E., J. Yang, K. Wang, B. Song, H. Zhu, X. Han, Y. Shi, C. Yang, Z. Zeng, and Z. Cao. Biodegradable zwitterionic cream gel for rffective prevention of postoperative adhesion. Adv Funct Mater. 31:2009431, 2021. https://doi.org/10.1002/adfm.202009431.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, J., J. M. Lee, P. Jiang, S. Henderson, and T. D. Lee. Reduction in postsurgical adhesion formation after cardiac surgery by application of N,O-carboxymethyl chitosan. J Thorac Cardiovasc Surg. 140:801–806, 2010. https://doi.org/10.1016/j.jtcvs.2009.11.030.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, D., P. Y. Yang, B. Zhou, and Y. C. Rui. Fibrin D-dimer fragments enhance inflammatory responses in macrophages: role in advancing atherosclerosis. Clin Exp Pharmacol Physiol. 34:185–190, 2007. https://doi.org/10.1111/j.1440-1681.2007.04570.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Division of Acellular Tissue and Regenerative Medical Materials is an endowment department, established with a grant from ADEKA Corporation. This work was supported by funding from the ADEKA Corporation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank KM Biologics Co., Ltd. for providing the fibrin glue (Bolheal®), which is commercially available. We thank Ashleigh Cooper, PhD, from Edanz (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichi Funamoto.

Ethics declarations

Conflict of interest

Yoshihide Hashimoto, Akitatsu Yamashita, Yongwei Zhang, Seiichi Funamoto, and Akio Kishida receive a research support from ADEKA Corporation. Masaki Tabuchi has no conflict of interest.

Additional information

Associate Editor Andreas Anayiotos oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, Y., Yamashita, A., Tabuchi, M. et al. Fibrin Hydrogel Layer-Anchored Pericardial Matrix Prevents Epicardial Adhesion in the Severe Heart Adhesion-Induced Miniature Pig Model. Ann Biomed Eng 52, 282–291 (2024). https://doi.org/10.1007/s10439-023-03373-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03373-0

Keywords

Navigation