Skip to main content

Advertisement

Log in

Disease Diagnosis Based on Improved Gray Wolf Optimization (IGWO) and Ensemble Classification

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper introduces a simple strategy for diagnosing disease, which is called improved gray wolf optimization (IGWO) and ensemble classification. The proposed strategy consists of two sequential phases, which are; (i) Feature Selection Phase (FSP) and (ii) Ensemble Classification Phase (ECP). During the former, the most effective features for diagnosing disease are selected, while during the latter, the actual diagnosis takes place depending on voting of five different classifiers. The main contribution of this paper is a suggested modification for the traditional Gray Wolf Optimization (GWO), which is called Improved Gray Wolf Optimization (IGWO). As an optimization technique, the proposed IGWO is employed in the FSP for selecting the effective features. For evaluating, IGWO has been implemented using recent feature selection techniques as well as the proposed method. To accomplish the classification phase; ensemble classification has been used which uses several classification techniques such as; Naïve Bayes (NB), Support Vector Machines (SVM), Deep Neural Network (DNN), Decision Tree (DT), and K-Nearest Neighbors (KNN). Ensemble classification integrate several classifiers for improving prediction performance. Experimental results have shown that employing IGWO promotes the performance of the diagnosing strategy of different diseases in terms of precision, recall, and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Moreno-Ibarra, M.-A., Y. Villuendas-Rey, et al. Classification of diseases using machine learning algorithms: a comparative study. Mathematics. 2021:9, 1817. https://doi.org/10.3390/math9151817.

    Article  Google Scholar 

  2. Elghamrawy, S. M., and A. E. Hassanien. A hybrid Genetic-Grey Wolf Optimization algorithm for optimizing Takagi–Sugeno–Kang fuzzy systems. Neural Comput. Appl. 34(19):17051–69, 2022.

    Article  Google Scholar 

  3. Kumar, Yogesh, Apeksha Koul, et al. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J. Ambient Intell. Hum. Comput. 2022. https://doi.org/10.1007/s12652-021-03612-z.

    Article  Google Scholar 

  4. Mirbabaie, M., S. Stieglitz, and N. R. Frick. Artificial intelligence in disease diagnostics: A critical review and classification on the current state of research guiding future direction. Health Technol. 11(4):693–731, 2021.

    Article  Google Scholar 

  5. Singh, A., J. C. Mehta, D. Anand, P. Nath, B. Pandey, and A. Khamparia. An intelligent hybrid approach for hepatitis disease diagnosis: combining enhanced k -means clustering and improved ensemble learning. Expert Syst. 2020. https://doi.org/10.1111/exsy.12526.

    Article  Google Scholar 

  6. Frick, N. R. J., H. L. Möllmann, M. Mirbabaie, and S. Stieglitz. Driving digital transformation during a pandemic: case study of virtual collaboration in a German Hospital. JMIR Med. Inform. 9(2):e25183, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mirbabaie, M., S. Stieglitz, and N. R. Frick. Hybrid intelligence in hospitals: towards a research agenda for collaboration. Electron. Markets. 31:365–87, 2021.

    Article  Google Scholar 

  8. ani SU, Khan NA, Thakur G, Gautam SP, Ali M, Alam P, Alshehri S, Ghoneim MM, Shakeel F. Utilization of artificial intelligence in disease prevention: Diagnosis, treatment, and implications for the healthcare workforce. In Healthcare 2022 Mar 24 (Vol. 10, No. 4, p. 608). MDPI. https://doi.org/10.3390/healthcare10040608.

  9. Sarkar, Tanmay, Molla Salauddin, et al. Application of bio-inspired optimization algorithms in food processing. Curr. Res. Food Sci. 5:432–450, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Johnvictor, A. C., V. Durgamahanthi, R. M. Pariti Venkata, and N. Jethi. Critical review of bio-inspired optimization techniques. Wiley Interdiscip. Rev. Comput. Stat. 14(1):1528, 2022.

    Article  Google Scholar 

  11. Mirjalili, S., and A. Lewis. S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput. 9:1–14, 2013.

    Article  Google Scholar 

  12. Luan, F., Z. Cai, S. Wu, T. Jiang, F. Li, and J. Yang. Improved whale algorithm for solving the flexible job shop scheduling problem. Mathematics. 7(5):384, 2019.

    Article  Google Scholar 

  13. Pan, C., A. Jin, W. Yang, and Y. Zhang. Early detection of network fault using improved Gray Wolf Optimization and wavelet neural network. Hindawi Math. Probl. Eng. 2022. https://doi.org/10.1155/2022/1235229.

    Article  Google Scholar 

  14. Mirjalili, S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89:228–249, 2015.

    Article  Google Scholar 

  15. Wang G. A comparative study of cuckoo algorithm and ant colony algorithm in optimal path problems. Paper presented at MATECweb of conferences, 232, 03003. EITCE (2018).

  16. Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 83:80–98, 2015.

    Article  Google Scholar 

  17. Mahdy, A.M.S., Lotfy, et al., “Analytical solution of magneto-photothermal theory during variable thermal conductivity of a semiconductor material due to pulse heat flux and volumetric heat source”, Waves Random Complex Media, 2021, 31, 2040–2057.

  18. Khamis, A. K., K. Lotfy, et al. Thermal-piezoelectric problem of a semiconductor medium during photo-thermal excitation. Waves Random Complex Media. 31:2499–2513, 2021.

    Article  Google Scholar 

  19. Hou, Y., H. Gao, et al. Improved Grey Wolf optimization algorithm and application. Sensors. 22:3810, 2022. https://doi.org/10.3390/s22103810.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shen, C., and K. Zhang. Two-stage improved Grey Wolf optimization algorithm for feature selection on high-dimensional classification. Complex Intell. Syst. 2021. https://doi.org/10.1007/s40747-021-00452-4.

    Article  Google Scholar 

  21. Feature selection using binary particle swarm optimization and support vector machines for medical diagnosis, Biomedizinische Technik/Biomedical Engineering, 2012.

  22. Predicting the cognitive states of the subjects in functional magnetic resonance imaging signals using the combination of feature selection strategies, Brain Topography, 2012.

  23. VijayAnand, M., B. KiranBala, et al. Gaussian Naïve Bayes Algorithm: a reliable technique involved in the assortment of the segregation in cancer. Hindawi Mob. Inf. Syst. 2022. https://doi.org/10.1155/2022/2436946.

    Article  Google Scholar 

  24. Rodríguez-Pérez, R., and J. Bajorath. Evolution of support vector machine and regression modeling in chemoinformatics and drug discovery. J. Comput. Aided Mol. Des. 2022. https://doi.org/10.1007/s10822-022-00442-9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Song, Y., X. Kong, and C. Zhang. A large-scale-nearest neighbor classification algorithm based on neighbor relationship preservation. Wirel. Commun. Mob. Comput. 2022. https://doi.org/10.1155/2022/7409171.

    Article  Google Scholar 

  26. Salehi, A., P. Baglat, and G. Gupta. Review on machine and deep learning models for the detection and prediction of Coronavirus. Mater. Today: Proc. 2020. https://doi.org/10.1016/j.matpr.2020.06.245.

    Article  Google Scholar 

  27. Gupta, B., A. Rawat, et al. Analysis of various decision tree algorithms for classification in data mining. Int. J. Comput. Appl. 163(8):15–19, 2017.

    Google Scholar 

  28. Frick, N. R. J., M. Mirbabaie, S. Stieglitz, and J. Salomon. Maneuvering through the stormy seas of digital transformation: the impact of empowering leadership on the AI readiness of enterprises. J. Decis. Syst. 2021. https://doi.org/10.1080/12460125.2020.1870065.

    Article  Google Scholar 

  29. Rauschert, S., K. Raubenheimer, P. E. Melton, and R. C. Huang. Machine learning and clinical epigenetics: a review of challenges for diagnosis and classification. Clin. Epigenet. 2020. https://doi.org/10.1186/s13148-020-00842-4.

    Article  Google Scholar 

  30. Mishra S, Yamasaki T, Imaizumi H. Supervised classifcation of Dermatological diseases by Deep learning. 2018,1–6.

  31. Jin, Y., C. Qin, Y. Huang, W. Zhao, and C. Liu. Multi-domain modeling of atrial fibrillation detection with twin attentional convolutional long short-term memory neural networks. Knowl. Based Syst. 193:5460, 2020.

    Article  Google Scholar 

  32. Lu, J., E. Song, A. Ghoneim, and M. Alrashoud. Machine learning for assisting cervical cancer diagnosis: An ensemble approach. Futur. Gener. Comput. Syst. 106:199–205, 2020.

    Article  Google Scholar 

  33. Ding, S., S. Hu, et al. A homogeneous ensemble method for predicting gastric cancer based on gastroscopy reports. Expert Syst. 37:1–14, 2020.

    Article  Google Scholar 

  34. Dutta, A., T. Batabyal, M. Basu, and S. T. Acton. An efficient convolutional neural network for coronary heart disease prediction. Expert Syst. Appl. 159:113408, 2020. https://doi.org/10.1016/j.eswa.2020.113408.

    Article  Google Scholar 

  35. Hamedan, F., A. Orooji, H. Sanadgol, and A. Sheikhtaheri. Clinical decision support system to predict chronic kidney disease: a fuzzy expert system approach. Int. J. Med. Inform. 138:104134, 2020. https://doi.org/10.1016/j.ijmedinf.2020.

    Article  PubMed  Google Scholar 

  36. Karabayir, I., S. M. Goldman, S. Pappu, and O. Akbilgic. Gradient boosting for Parkinson’s disease diagnosis from voice recordings. BMC Med. Inform. Decis. Mak. 20:228, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Senturk, Z. K. Early diagnosis of Parkinson’s disease using machine learning algorithms. Med. Hypotheses. 138:109603, 2020. https://doi.org/10.1016/j.mehy.2020.109603.

    Article  Google Scholar 

  38. Erkan, U., and D. N. H. Thanh. Autism spectrum disorder detection with machine learning methods. Curr. Psychiatry Res. Rev. 15:297–308, 2019. https://doi.org/10.2174/2666082215666191111121115.

    Article  Google Scholar 

  39. Yuan, K. C., L. W. Tsai, et al. The development an artificial intelligence algorithm for early sepsis diagnosis in the intensive care unit. Int. J. Med. Inform. 141:104176, 2020. https://doi.org/10.1016/j.ijmedinf.2020.104176.

    Article  PubMed  Google Scholar 

  40. Uchino, E., K. Suzuki, et al. Classification of glomerular pathological findings using deep learning and nephrologist–AI collective intelligence approach. Int. J. Med. Inform. 141:104231, 2020. https://doi.org/10.1016/j.ijmedinf.2020.104231.

    Article  PubMed  Google Scholar 

  41. Steinbuss, G., K. Kriegsmann, and M. Kriegsmann. Identifcation of gastritis subtypes by convolutional neuronal networks on histological images of antrum and corpus biopsies. Int. J. Mol. Sci. 21:6652, 2020. https://doi.org/10.3390/ijms21186652.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Laurentinus et al., “Design Fuzzy Expert System And Certainty Factor In Early Detection Of Stroke Disease”, 2020 8th International Conference on Cyber and IT Service Management (CITSM), 2020, pp. 1–7. https://doi.org/10.1109/CITSM50537.2020.9268830.

  43. Chen Y, Li M, et al. Classification of glomerular spikes using Convolutional Neural Network. Proc. Conf Artif Intell Healthc. New York, NY, USA: ACM. 2020; 2020:254–8, https://doi.org/10.1145/3433996.3434043.

  44. Nithya, A., A. Ahilan, N. Venkatadri, D. Ramji, and A. Palagan. Kidney disease detection and segmentation using artifcial neural network and multi kernel k-means clustering for ultrasound images. Measurement. 149:106952, 2019. https://doi.org/10.1016/j.measurement.2019.106952.

    Article  Google Scholar 

  45. Khan, A., M. Khan, F. Ahmed, et al. Gastrointestinal diseases segmentation and classification based on duo-deep architectures. Pattern Recognit Lett. 131:193–204, 2020. https://doi.org/10.1016/j.patrec.2019.12.024.

    Article  Google Scholar 

  46. Gouda, W., and R. Yasin. COVID-19 disease: CT pneumonia analysis prototype by using artificial intelligence, predicting the disease severity. J Radiol Nucl Med. 51:196, 2020. https://doi.org/10.1186/s43055-020-00309-9.

    Article  Google Scholar 

  47. Vasal, S., S. Jain, and A. Verma. COVID-AI: an artificial intelligence system to diagnose COVID 19 disease. J Eng Res Technol. 9:1–6, 2020.

    Google Scholar 

  48. Kanegae, H., K. Suzuki, et al. Highly precise risk prediction model for new onset hypertension using artificial neural network techniques. J Clin Hypertens. 22:445–450, 2020. https://doi.org/10.1111/jch.13759.

    Article  Google Scholar 

  49. Lai, N., W. Shen, C. Lee, J. Chang, M. Hsu, et al. Comparison of the predictive outcomes for anti-Alzheimer drug-induced hepatotoxicity by different machine learning techniques. Comput Methods Programs Biomed. 188:307, 2020. https://doi.org/10.1016/j.cmpb.2019.105307.

    Article  Google Scholar 

  50. Sarao, V., D. Veritti, and L. Paolo. Automated diabetic retinopathy detection with two diferent retinal imaging devices using artificial intelligence. Graefe’s Arch Clin Exp Opthamol. 2020. https://doi.org/10.1007/s00417-020-04853-y.

    Article  Google Scholar 

  51. Khan, A., and S. Zubair. An improved multi-modal based machine learning approach for the prognosis of Alzheimer’s disease. J. King Saud Univ. Comput. Inf. Sci. 2020. https://doi.org/10.1016/j.jksuci.2020.04.004.

    Article  Google Scholar 

  52. Isravel, D. P., and S. V. P. D. Silas. Improved heart disease diagnostic IoT model using machine learning techniques. Neuroscience. 9:4442–4446, 2020.

    Google Scholar 

  53. Rodrigues, D. A., R. F. Ivo, S. C. Satapathy, S. Wang, J. Hemanth, and P. P. R. Filho. A new approach for classification skin lesion based on transfer learning, deep learning, and IoT system. Pattern Recogn. Lett. 136:8–15, 2020. https://doi.org/10.1016/j.patrec.2020.05.019.

    Article  Google Scholar 

  54. http://ai.nilehi.edu.eg/Available_datasets.php.

  55. http://covid19.nilehi.edu.eg.

  56. https://www.kaggle.com/datasets/abhi8923shriv/liver-disease-patient-dataset.

  57. Abasabadi, S., H. Nematzadeh, H. Motameni, et al. Hybrid feature selection based on SLI and genetic algorithm for microarray datasets. J. Supercomput. 2022. https://doi.org/10.1007/s11227-022-04650-w.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kamel, S. R., and R. Yaghoubzadeh. Feature selection using grasshopper optimization algorithm in diagnosis of diabetes disease. Inform. Med. Unlocked. 2021. https://doi.org/10.1016/j.imu.2021.100707.

    Article  Google Scholar 

  59. Rabie, A. H., A. I. Saleh, and N. A. Mansour. A Covid-19’s integrated herd immunity (CIHI) based on classifying people vulnerability. Comput. Biol. Med. 2021. https://doi.org/10.1016/j.compbiomed.2021.105112.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kundu, R., S. Chattopadhyay, E. Cuevas, and R. Sarkar. AltWOA: Altruistic Whale Optimization Algorithm for feature selection on microarray datasets. Comput. Biol. Med. 2022. https://doi.org/10.1016/j.compbiomed.2022.105349,Volume144.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pashaei, E., and E. Pashaei. An efficient binary chimp optimization algorithm for feature selection in biomedical data classification. Neural Comput. Appl. 34:6427–6451, 2022. https://doi.org/10.1007/s00521-021-06775-0.

    Article  Google Scholar 

  62. Lan, P., K. Xia, et al. An improved GWO algorithm optimized RVFL model for oil layer prediction. Electronics. 10:3178, 2021. https://doi.org/10.3390/electronics10243178.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaimaa A. Hussien.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Associate Editor Mona Kamal Marei oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, A.I., Hussien, S.A. Disease Diagnosis Based on Improved Gray Wolf Optimization (IGWO) and Ensemble Classification. Ann Biomed Eng 51, 2579–2605 (2023). https://doi.org/10.1007/s10439-023-03303-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03303-0

Keywords

Navigation