Skip to main content

Advertisement

Log in

3D Finite Element Model of Human Ear with 3-Chamber Spiral Cochlea for Blast Wave Transmission from the Ear Canal to Cochlea

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Blast-induced auditory trauma is a common injury in military service members and veterans that leads to hearing loss. While the inner ear response to blast exposure is difficult to characterize experimentally, computational models have advanced to predict blast wave transmission from the ear canal to the cochlea; however, published models have either straight or spiral cochlea with fluid-filled two chambers. In this paper, we report the recently developed 3D finite element (FE) model of the human ear mimicking the anatomical structure of the 3-chambered cochlea. The model consists of the ear canal, middle ear, and two and a half turns of the cochlea with three chambers separated by the Reissner’s membrane (RM) and the basilar membrane (BM). The blast overpressure measured from human temporal bone experiments was applied at the ear canal entrance and the Fluent/Mechanical coupled fluid–structure interaction analysis was conducted in ANSYS software. The FE model-derived results include the pressure in the canal near the tympanic membrane (TM) and the intracochlear pressure at scala vestibuli, the TM displacement, and the stapes footplate (SFP) displacement, which were compared with experimentally measured data in human temporal bones. The validated model was used to predict the biomechanical response of the ear to blast overpressure: distributions of the maximum strain and stress within the TM, the BM displacement variation from the base to apex, and the energy flux or total energy entering the cochlea. The comparison of intracochlear pressure and BM displacement with those from the FE model of 2-chambered cochlea indicated that the 3-chamber cochlea model with the RM and scala media chamber improved our understanding of cochlea mechanics. This most comprehensive FE model of the human ear has shown its capability to predict the middle ear and cochlea responses to blast overpressure which will advance our understanding of auditory blast injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bien, A. G., S. Jiang, and R. Z. Gan. Real-time measurement of stapes motion and intracochlear pressure during blast exposure. Hear. Res. 429:1–11, 2023.

    Article  Google Scholar 

  2. Böhnke, F., and W. Arnold. 3D-Finite element model of the human cochlea including fluid-structure couplings. ORL. 61:305–310, 1999.

    Article  PubMed  Google Scholar 

  3. Brown, M. A., J. J. Bradshaw, and R. Z. Gan. Three-dimensional finite element modeling of blast wave transmission from the external ear to a spiral cochlea. J. Biomech. Eng. 144:014503, 2022.

    Article  PubMed  Google Scholar 

  4. Brown, M. A., X. D. Ji, and R. Z. Gan. 3D Finite element modeling of blast wave transmission from the external ear to cochlea. Ann. Biomed. Eng. 49:757–768, 2021.

    Article  PubMed  Google Scholar 

  5. Cheng, T., C. Dai, and R. Z. Gan. Viscoelastic properties of human tympanic membrane. Ann. Biomed. Eng. 35:305–314, 2007.

    Article  PubMed  Google Scholar 

  6. Cooper, N. P., and W. S. Rhode. Nonlinear mechanics at the apex of the guinea-pig cochlea. Hear. Res. 82:225–243, 1995.

    Article  CAS  PubMed  Google Scholar 

  7. De Paolis, A., M. Bikson, J. T. Nelson, J. A. de Ru, M. Packer, and L. Cardoso. Analytical and numerical modeling of the hearing system: advances towards the assessment of hearing damage. Hear. Res. 349:111–128, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dewey, J. M. The air velocity in blast waves from t.n.t. explosions. Proc. R. Soc. Lond. A. 279:366–385, 1964.

    Article  Google Scholar 

  9. Elliott, S. J., G. Ni, B. R. Mace, and B. Lineton. A wave finite element analysis of the passive cochlea. J. Acoust. Soc. Am. 133:1535–1545, 2013.

    Article  PubMed  Google Scholar 

  10. Gan, R. Z., B. Feng, and Q. Sun. Three-dimensional finite element modeling of human ear for sound transmission. Ann. Biomed. Eng. 32:847–859, 2004.

    Article  PubMed  Google Scholar 

  11. Gan, R. Z., and S. Jiang. Surface motion changes of tympanic membrane damaged by blast waves. J. Biomech. Eng. 141:091009, 2019.

    Article  PubMed  Google Scholar 

  12. Gan, R. Z., D. Nakmali, X. D. Ji, K. Leckness, and Z. Yokell. Mechanical damage of tympanic membrane in relation to impulse pressure waveform—a study in chinchillas. Hear. Res. 340:25–34, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gan, R. Z., B. P. Reeves, and X. Wang. Modeling of sound transmission from ear canal to cochlea. Ann. Biomed. Eng. 35:2180–2195, 2007.

    Article  PubMed  Google Scholar 

  14. Gan, R. Z., Q. Sun, B. Feng, and M. W. Wood. Acoustic–structural coupled finite element analysis for sound transmission in human ear—pressure distributions. Med. Eng. Phys. 28:395–404, 2006.

    Article  PubMed  Google Scholar 

  15. Greene, N. T., M. A. Alhussaini, J. R. Easter, T. F. Argo, T. Walilko, and D. J. Tollin. Intracochlear pressure measurements during acoustic shock wave exposure. Hear. Res. 365:149–164, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Herrmann, G., and H. Liebowitz. Chapter 10 - Mechanics of Bone Fracture. In: Fracture of Nonmetals and Composites, edited by H. Liebowitz. Academic Press, 1972, pp. 771–840. https://doi.org/10.1016/B978-0-12-449707-8.50014-2

  17. Hickman, T. T., C. Smalt, J. Bobrow, T. Quatieri, and M. C. Liberman. Blast-induced cochlear synaptopathy in chinchillas. Sci. Rep. 8:10740, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang, S., C. Dai, and R. Z. Gan. Dual-laser measurement of human stapes footplate motion under blast exposure. Hear. Res. 403:108177, 2021.

    Article  PubMed  Google Scholar 

  19. Jiang, S., K. Smith, and R. Z. Gan. Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure. Hear. Res. 378:43–52, 2019.

    Article  PubMed  Google Scholar 

  20. Kim, S. H., K. X. Kim, N. N. Raveendran, T. Wu, S. R. Pondugula, and D. C. Marcus. Regulation of ENaC-mediated sodium transport by glucocorticoids in Reissner’s membrane epithelium. Am. J. Physiol. Cell Physiol. 296:14, 2009.

    Article  Google Scholar 

  21. Kirikae, I. The Structure and Function of the Middle Ear. Tokyo: University of Tokyo Press, 1960.

    Google Scholar 

  22. Leckness, K., D. Nakmali, and R. Z. Gan. Computational modeling of blast wave transmission through human ear. Mil. Med. 183:262–268, 2018.

    Article  PubMed  Google Scholar 

  23. Lee, J. H., and D. C. Marcus. Endolymphatic sodium homeostasis by REISSNER’s membrane. Neuroscience. 119:3–8, 2003.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, W., F. Atturo, R. Aldaya, P. Santi, S. Cureoglu, S. Obwegeser, R. Glueckert, K. Pfaller, A. Schrott-Fischer, and H. Rask-Andersen. Macromolecular organization and fine structure of the human basilar membrane—RELEVANCE for cochlear implantation. Cell Tissue Res. 360:245–262, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Olson, E. S., H. Duifhuis, and C. R. Steele. Von Békésy and cochlear mechanics. Hear. Res. 293:31–43, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Paik, C. B., M. Pei, and J. S. Oghalai. Review of blast noise and the auditory system. Hear. Res. 2022. https://doi.org/10.1016/j.heares.2022.108459.

    Article  PubMed  Google Scholar 

  27. Price, G. R. Validation of the auditory hazard assessment algorithm for the human with impulse noise data. J. Acoust. Soc. Am. 122:2786, 2007.

    Article  PubMed  Google Scholar 

  28. Price, G. R. Predicting mechanical damage to the organ of Corti. Hear. Res. 226:5–13, 2007.

    Article  PubMed  Google Scholar 

  29. Reichenbach, T., A. Stefanovic, F. Nin, and A. J. Hudspeth. Waves on Reissner’s membrane: a mechanism for the propagation of otoacoustic emissions from the cochlea. Cell Rep. 1:374–384, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun, Q., R. Z. Gan, K.-H. Chang, and K. J. Dormer. Computer-integrated finite element modeling of human middle ear. Biomech. Model. Mechanobiol. 1:109–122, 2002.

    Article  CAS  PubMed  Google Scholar 

  31. Yu, Y.-C., T.-C. Wang, and T.-C. Shih. A comprehensive finite-element human ear model to estimate noise-induced hearing loss associated with occupational noise exposure. Comput. Methods Programs Biomed. 226:107179, 2022.

    Article  PubMed  Google Scholar 

  32. Zhang, X., and R. Z. Gan. A Comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans. Biomed. Eng. 58:3024–3027, 2011.

    Article  PubMed  Google Scholar 

  33. Zhang, X., and R. Z. Gan. Finite element modeling of energy absorbance in normal and disordered human ears. Hear. Res. 301:146–155, 2013.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by Department of Defense (DoD) Grant No. W81XWH-14-1-0228.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Z. Gan.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradshaw, J.J., Brown, M.A., Jiang, S. et al. 3D Finite Element Model of Human Ear with 3-Chamber Spiral Cochlea for Blast Wave Transmission from the Ear Canal to Cochlea. Ann Biomed Eng 51, 1106–1118 (2023). https://doi.org/10.1007/s10439-023-03200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03200-6

Keywords

Navigation