Skip to main content

Evaluation of the Morphological and Biological Functions of Vascularized Microphysiological Systems with Supervised Machine Learning

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Vascularized microphysiological systems and organoids are contemporary preclinical experimental platforms representing human tissue or organ function in health and disease. While vascularization is emerging as a necessary physiological organ-level feature required in most such systems, there is no standard tool or morphological metric to measure the performance or biological function of vascularized networks within these models. Further, the commonly reported morphological metrics may not correlate to the network’s biological function—oxygen transport. Here, a large library of vascular network images was analyzed by the measure of each sample’s morphology and oxygen transport potential. The oxygen transport quantification is computationally expensive and user-dependent, so machine learning techniques were examined to generate regression models relating morphology to function. Principal component and factor analyses were applied to reduce dimensionality of the multivariate dataset, followed by multiple linear regression and tree-based regression analyses. These examinations reveal that while several morphological data relate poorly to the biological function, some machine learning models possess a relatively improved, but still moderate predictive potential. Overall, random forest regression model correlates to the biological function of vascular networks with relatively higher accuracy than other regression models.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Al Tameemi, W., T. P. Dale, R. M. K. Al-Jumaily, and N. R. Forsyth. Hypoxia-modified cancer cell metabolism. Front. Cell Dev. Biol. 7:4, 2019. https://doi.org/10.3389/fcell.2019.00004.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Allen, M. P. In: Understanding Regression Analysis, edited by M. P. Allen. New York: Springer, 1997, pp. 176–180.

  3. Campisi, M., et al. 3D self-organized microvascular model of the human blood–brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials. 180:117–129, 2018. https://doi.org/10.1016/j.biomaterials.2018.07.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Candiello, J., et al. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform. Biomaterials. 177:27–39, 2018. https://doi.org/10.1016/j.biomaterials.2018.05.031.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, A. X., et al. Controlled apoptosis of stromal cells to engineer human microlivers. Adv. Funct. Mater. 2020. https://doi.org/10.1002/adfm.201910442.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Corliss, B. A., et al. REAVER: a program for improved analysis of high-resolution vascular network images. Microcirculation. 27:e12618, 2020. https://doi.org/10.1111/micc.12618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Corliss, B. A., C. Mathews, R. Doty, G. Rohde, and S. M. Peirce. Methods to label, image, and analyze the complex structural architectures of microvascular networks. Microcirculation. 26:e12520, 2019. https://doi.org/10.1111/micc.12520.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Craney, T. A., and J. G. Surles. Model-dependent variance inflation factor cutoff values. Qual. Eng. 14:391–403, 2002. https://doi.org/10.1081/QEN-120001878.

    Article  Google Scholar 

  9. Cui, H., et al. Engineering a novel 3D printed vascularized tissue model for investigating breast cancer metastasis to bone. Adv. Healthc. Mater. 9:e1900924, 2020. https://doi.org/10.1002/adhm.201900924.

    Article  CAS  PubMed  Google Scholar 

  10. David, C. C., and D. J. Jacobs. Principal component analysis: a method for determining the essential dynamics of proteins. Methods Mol. Biol. 1084:193–226, 2014. https://doi.org/10.1007/978-1-62703-658-0_11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Farrar, D. E., and R. R. Glauber. Multicollinearity in regression analysis: the problem revisited. Rev. Econ. Stat. 49:92–107, 1967. https://doi.org/10.2307/1937887.

    Article  Google Scholar 

  12. Galan, E. A., et al. Intelligent microfluidics: the convergence of machine learning and microfluidics in materials science and biomedicine. Matter. 3:1893–1922, 2020. https://doi.org/10.1016/j.matt.2020.08.034.

    Article  Google Scholar 

  13. Giordano, F. J. Oxygen: both a passenger and a biological determinant in the vasculature. Arterioscler. Thromb. Vasc. Biol. 30:641–642, 2010. https://doi.org/10.1161/ATVBAHA.110.202945.

    Article  CAS  PubMed  Google Scholar 

  14. Gold, K., A. K. Gaharwar, and A. Jain. Emerging trends in multiscale modeling of vascular pathophysiology: organ-on-a-chip and 3D printing. Biomaterials. 196:2–17, 2019. https://doi.org/10.1016/j.biomaterials.2018.07.029.

    Article  CAS  PubMed  Google Scholar 

  15. Guadagnoli, E., and W. F. Velicer. Relation of sample size to the stability of component patterns. Psychol. Bull. 103:265–275, 1988. https://doi.org/10.1037/0033-2909.103.2.265.

    Article  PubMed  Google Scholar 

  16. Ingber, D. E. Is it time for reviewer 3 to request human organ chip experiments instead of animal validation studies? Adv. Sci. (Weinh.). 7:2002030, 2020. https://doi.org/10.1002/advs.202002030.

    Article  CAS  PubMed  Google Scholar 

  17. Jeon, J. S., et al. Generation of 3D functional microvascular networks with mural cell-differentiated human mesenchymal stem cells in microfluidic vasculogenesis systems. Integr. Biol. (Camb.). 6:555–563, 2014. https://doi.org/10.1039/b000000x/NIH-PA.

    Article  CAS  PubMed  Google Scholar 

  18. Jeon, J. S., et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl Acad. Sci. USA. 112:214–219, 2015. https://doi.org/10.1073/pnas.1417115112.

    Article  CAS  PubMed  Google Scholar 

  19. Jeon, J. S., I. K. Zervantonakis, S. Chung, R. D. Kamm, and J. L. Charest. In vitro model of tumor cell extravasation. PLoS ONE. 8:e56910, 2013. https://doi.org/10.1371/journal.pone.0056910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, J., et al. Engineering of a biomimetic pericyte-covered 3D microvascular network. PLoS ONE. 10:e0133880, 2015. https://doi.org/10.1371/journal.pone.0133880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, S., H. Lee, M. Chung, and N. L. Jeon. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip. 13:1489–1500, 2013. https://doi.org/10.1039/c3lc41320a.

    Article  CAS  PubMed  Google Scholar 

  22. Lee, S., et al. Microfluidic-based vascularized microphysiological systems. Lab Chip. 18:2686–2709, 2018. https://doi.org/10.1039/c8lc00285a.

    Article  CAS  PubMed  Google Scholar 

  23. Lewis, R. J. In: Proceedings of the 2000 Annual Meeting of the Society for Academic Emergency Medicine, 2000, pp. 1–14.

  24. Li, J., et al. An overview of organs-on-chips based on deep learning. Research (Wash DC). 9869518:2022, 2022. https://doi.org/10.34133/2022/9869518.

    Article  Google Scholar 

  25. Mathur, T., et al. Organ-on-chips made of blood: endothelial progenitor cells from blood reconstitute vascular thromboinflammation in vessel-chips. Lab Chip. 19:2500–2511, 2019. https://doi.org/10.1039/c9lc00469f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mathur, T., J. J. Tronolone, and A. Jain. Comparative analysis of blood-derived endothelial cells for designing next-generation personalized organ-on-chips. J. Am. Heart. Assoc. 10:e022795, 2021. https://doi.org/10.1161/JAHA.121.022795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mathur, T., J. J. Tronolone, and A. Jain. AngioMT: an in silico platform for digital sensing of oxygen transport through heterogeneous microvascular networks. bioRxiv. 2023. https://doi.org/10.1101/2023.01.09.523275.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pang, L., et al. Workshop report: FDA workshop on improving cardiotoxicity assessment with human-relevant platforms. Circ. Res. 125:855–867, 2019. https://doi.org/10.1161/CIRCRESAHA.119.315378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Phan, D. T. T., et al. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab Chip. 17:511–520, 2017. https://doi.org/10.1039/c6lc01422d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rajeeva Pandian, N. K., B. K. Walther, R. Suresh, J. P. Cooke, and A. Jain. Microengineered human vein-chip recreates venous valve architecture and its contribution to thrombosis. Small. 16:e2003401, 2020. https://doi.org/10.1002/smll.202003401.

    Article  CAS  PubMed  Google Scholar 

  31. Rambol, M. H., E. Han, and L. Niklason. Microvessel network formation and interactions with pancreatic islets in 3D chip cultures. Tissue Eng. A. 2019. https://doi.org/10.1089/ten.TEA.2019.0186.

    Article  Google Scholar 

  32. Saha, B., et al. OvCa-Chip microsystem recreates vascular endothelium-mediated platelet extravasation in ovarian cancer. Blood Adv. 4:3329–3342, 2020. https://doi.org/10.1182/bloodadvances.2020001632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saha, B., et al. Human tumor microenvironment chip evaluates the consequences of platelet extravasation and combinatorial antitumor–antiplatelet therapy in ovarian cancer. Sci. Adv. 7:eabg5283, 2021. https://doi.org/10.1126/sciadv.abg5283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sendoel, A., and M. O. Hengartner. Apoptotic cell death under hypoxia. Physiology (Bethesda). 29:168–176, 2014. https://doi.org/10.1152/physiol.00016.2013.

    Article  CAS  PubMed  Google Scholar 

  35. Shin, Y. C., et al. Three-dimensional regeneration of patient-derived intestinal organoid epithelium in a physiodynamic mucosal interface-on-a-chip. Micromachines (Basel). 2020. https://doi.org/10.3390/mi11070663.

    Article  PubMed  Google Scholar 

  36. Shirure, V. S., C. C. W. Hughes, and S. C. George. Engineering vascularized organoid-on-a-chip models. Annu. Rev. Biomed. Eng. 2021. https://doi.org/10.1146/annurev-bioeng-090120-094330.

    Article  PubMed  Google Scholar 

  37. Si, L., et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat. Biomed. Eng. 5:815–829, 2021. https://doi.org/10.1038/s41551-021-00718-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Strobel, H. A., A. Schultz, S. M. Moss, R. Eli, and J. B. Hoying. Quantifying vascular density in tissue engineered constructs using machine learning. Front. Physiol. 12:650714, 2021. https://doi.org/10.3389/fphys.2021.650714.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Taherdoost, H., S. Sahibuddin, and N. Jalaliyoon. In: Advances in Applied and Pure Mathematics Vol. 27 Mathematics and Computers in Science and Engineering Series, edited by B. Jerzy. Athens: WSEAS, 2014, pp. 375–382.

  40. Tronolone, J. J., et al. Electric field assisted self-assembly of viruses into colored thin films. Nanomaterials (Basel). 2019. https://doi.org/10.3390/nano9091310.

    Article  PubMed  Google Scholar 

  41. Tronolone, J. J., and A. Jain. Engineering new microvascular networks on-chip: ingredients, assembly, and best practices. Adv. Funct. Mater. 2021. https://doi.org/10.1002/adfm.202007199.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tronolone, J. J., J. Lam, A. Agrawal, and K. Sung. Pumpless, modular, microphysiological systems enabling tunable perfusion for long-term cultivation of endothelialized lumens. Biomed. Microdevices. 23:25, 2021. https://doi.org/10.1007/s10544-021-00562-3.

    Article  CAS  PubMed  Google Scholar 

  43. van den Berg, A., C. L. Mummery, R. Passier, and A. D. van der Meer. Personalised organs-on-chips: functional testing for precision medicine. Lab Chip. 19:198–205, 2019. https://doi.org/10.1039/c8lc00827b.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, J., et al. A virus-induced kidney disease model based on organ-on-a-chip: pathogenesis exploration of virus-related renal dysfunctions. Biomaterials. 219:119367, 2019. https://doi.org/10.1016/j.biomaterials.2019.119367.

    Article  CAS  PubMed  Google Scholar 

  45. Weber, E. J., et al. Human kidney on a chip assessment of polymyxin antibiotic nephrotoxicity. JCI Insights. 2018. https://doi.org/10.1172/jci.insight.123673.

    Article  Google Scholar 

  46. Whisler, J. A., M. B. Chen, and R. D. Kamm. Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng. C. 20:543–552, 2014. https://doi.org/10.1089/ten.TEC.2013.0370.

    Article  CAS  Google Scholar 

  47. Yi, H. G., et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat. Biomed. Eng. 3:509–519, 2019. https://doi.org/10.1038/s41551-019-0363-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This material is supported by an American Heart Association Predoctoral Fellowship under Grant No. 906239, a National Science Foundation Graduate Research Fellowship under Grant No. 1650114, and a Texas A&M Biomedical Engineering Department National Excellence Fellowship to J.J.T.; and by the NHLBI of NIH under Award Number R01HL157790, NSF CAREER Award Number 1944322, and Texas A&M University President’s Excellence in Research Award (T32/X-Grant) to A.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Jain.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(PDF 1865 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tronolone, J.J., Mathur, T., Chaftari, C.P. et al. Evaluation of the Morphological and Biological Functions of Vascularized Microphysiological Systems with Supervised Machine Learning. Ann Biomed Eng 51, 1723–1737 (2023). https://doi.org/10.1007/s10439-023-03177-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03177-2

Keywords