Skip to main content

Advertisement

Log in

Experimental Protocol and Phantom Design and Development for Performance Characterization of Conventional Devices for Peripheral Vascular Interventions

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Conventional catheter-based interventions for treating peripheral artery disease suffer high failure and complication rates. The mechanical interactions with the anatomy constrain catheter controllability, while their length and flexibility limit their pushability. Also, the 2D X-ray fluoroscopy guiding these procedures fails to provide sufficient feedback about the device location relative to the anatomy. Our study aims to quantify the performance of conventional non-steerable (NS) and steerable (S) catheters in phantom and ex vivo experiments. In a 10 mm diameter, 30 cm long artery phantom model, with four operators, we evaluated the success rate and crossing time in accessing 1.25 mm target channels, the accessible workspace, and the force delivered through each catheter. For clinical relevance, we evaluated the success rate and crossing time in crossing ex vivo chronic total occlusions. For the S and NS catheters, respectively, users successfully accessed 69 and 31% of the targets, 68 and 45% of the cross-sectional area, and could deliver 14.2 and 10.2 g of mean force. Using a NS catheter, users crossed 0.0 and 9.5% of the fixed and fresh lesions, respectively. Overall, we quantified the limitations of conventional catheters (navigation, reachable workspace, and pushability) for peripheral interventions; this can serve as a basis for comparison with other devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adam, D. J., J. D. Beard, T. Cleveland, J. Bell, A. W. Bradbury, J. F. Forbes, F. G. R. Fowkes, I. Gillepsie, C. V. Ruckley, G. Raab, H. Storkey, and BASIL Trial Participants. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet 366:1925–1934, 2005.

  2. Ali, A., D. H. Plettenburg, and P. Breedveld. Steerable catheters in cardiology: classifying steerability and assessing future challenges. IEEE Trans. Biomed. Eng. 63(4):679–693, 2016

    PubMed  Google Scholar 

  3. Ali, A., A. Sakes, E. A. Arkenbout, P. Henselmans, R. van Starkenburg, T. Szili-Torok, and P. Breedveld. Catheter steering in interventional cardiology: mechanical analysis and novel solution. Proc. Inst. Mech. Eng. H. 233:1207–1218, 2019

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bishop, P. D., T. Fultz, L. Smith, R. S. Klatte, F. Loth, and S. P. Lyden. An initial effort to create a superficial femoral artery ultrasound phantom using 3-dimensional printing. J. Vasc. Ultrasound. 44:69–73, 2020

    Article  Google Scholar 

  5. Conte, M. S. Critical appraisal of surgical revascularization for critical limb ischemia. J. Vasc. Surg. 57:8S-13S, 2013

    Article  PubMed  Google Scholar 

  6. Criqui, M. H., and V. Aboyans. Epidemiology of peripheral artery disease. Circ. Res. 116:1509–1526, 2015

    Article  CAS  PubMed  Google Scholar 

  7. Flitney, E. W., E. R. Kuczmarski, S. A. Adam, and R. D. Goldman. Insights into the mechanical properties of epithelial cells: the effects of shear stress on the assembly and remodeling of keratin intermediate filaments. FASEB J. 23:2110–2119, 2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fowkes, F. G. R., V. Aboyans, F. J. I. Fowkes, M. M. McDermott, U. K. A. Sampson, and M. H. Criqui. Peripheral artery disease: epidemiology and global perspectives. Nat. Rev. Cardiol. 2016 14:3. 14:156–170, 2016

    Google Scholar 

  9. Ganji, Y., and F. Janabi-Sharifi. Catheter kinematics for intracardiac navigation. IEEE Trans. Biomed. Eng. 56:621–632, 2009

    Article  PubMed  Google Scholar 

  10. Ghibes, P., S. Partovi, G. Grözinger, P. Martirosian, F. Schick, K. Nikolaou, D. Ketelsen, R. Syha, and U. Grosse. Reliability and accuracy of peri-interventional stenosis grading in peripheral artery disease using color-coded quantitative fluoroscopy: a phantom study comparing a clinical and scientific postprocessing software. Biomed. Res. Int. 2018:6180138, 2018

    Article  PubMed  PubMed Central  Google Scholar 

  11. Golomb, B. A., T. T. Dang, and M. H. Criqui. Peripheral arterial disease: morbidity and mortality implications. Circulation. 114(7):688–699, 2006

    Article  PubMed  Google Scholar 

  12. Hu, X., A. Chen, Y. Luo, C. Zhang, and E. Zhang. Steerable catheters for minimally invasive surgery: a review and future directions. Comput. Assist. Surg. 23(1):21–41, 2018

    Article  Google Scholar 

  13. Iida, O., Y. Soga, K. Hirano, D. Kawasaki, K. Suzuki, Y. Miyashita, H. Terashi, and M. Uematsu. Long-term results of direct and indirect endovascular revascularization based on the angiosome concept in patients with critical limb ischemia presenting with isolated below-the-knee lesions. J. Vasc. Surg. 55:363-370.e5, 2012

    Article  PubMed  Google Scholar 

  14. Jones, M., M. Rockley, and P. Jetty. Novel physician-modified steerable endovascular catheter. J. Vasc. Surg. 72:e349–e350, 2020

    Article  Google Scholar 

  15. Ketteler, E. R., and K. R. Brown. Radiation exposure in endovascular procedures. J. Vasc. Surg. 53:35S-38S, 2011

    Article  PubMed  Google Scholar 

  16. Lanzer, P. Textbook of Catheter-Based Cardiovascular Interventions. 2018. https://doi.org/10.1007/978-3-319-55994-0

  17. Ling, Y., C. Li, K. Feng, R. Duncan, R. Eisma, Z. Huang, and G. Nabi. Effects of fixation and preservation on tissue elastic properties measured by quantitative optical coherence elastography (OCE). J. Biomech. 49:1009–1015, 2016

    Article  PubMed  Google Scholar 

  18. Malas, M. B., N. Enwerem, U. Qazi, B. Brown, E. B. Schneider, T. Reifsnyder, J. A. Freischlag, and B. A. Perler. Comparison of surgical bypass with angioplasty and stenting of superficial femoral artery disease. J. Vasc. Surg. 59:129–135, 2014

    Article  PubMed  Google Scholar 

  19. McCarthy, R. J., W. Neary, C. Roobottom, A. Tottle, and S. Ashley. Short-term results of femoropopliteal subintimal angioplasty. Br. J. Surg. 87:1361–1365, 2000

    Article  CAS  PubMed  Google Scholar 

  20. Mekle, R., E. Hofmann, K. Scheffler, and D. Bilecen. A polymer-based MR-compatible guidewire: a study to explore new prospects for interventional peripheral magnetic resonance angiography (ipMRA). J. Magn. Reson. Imaging. 23:145–155, 2006

    Article  PubMed  Google Scholar 

  21. Ohana, M., S. El Ghannudi, E. Girsowicz, A. Lejay, Y. Georg, F. Thaveau, N. Chakfe, and C. Roy. Detailed cross-sectional study of 60 superficial femoral artery occlusions: morphological quantitative analysis can lead to a new classification. Cardiovasc. Diagn. Ther. 4:71–79, 2014

    PubMed  PubMed Central  Google Scholar 

  22. Polanczyk, A., M. Podgorski, M. Polanczyk, A. Piechota-Polanczyk, C. Neumayer, and L. Stefanczyk. A novel patient-specific human cardiovascular system phantom (HCSP) for reconstructions of pulsatile blood hemodynamic inside abdominal aortic aneurysm. IEEE Access. 6:61896–61903, 2018

    Article  Google Scholar 

  23. Rafii-Tari, H., C. V. Riga, C. J. Payne, M. S. Hamady, N. J. W. Cheshire, C. D. Bicknell, and G. Z. Yang. Reducing contact forces in the arch and supra-aortic vessels using the Magellan robot. J. Vasc. Surg. 64:1422–1432, 2016

    Article  PubMed  Google Scholar 

  24. Rosenschein, U., L. A. Rozenszajn, L. Kraus, C. C. Marboe, J. F. Watkins, E. A. Rose, D. David, P. J. Cannon, and J. S. Weinstein. Ultrasonic angioplasty in totally occluded peripheral arteries initial clinical, histological, and angiographic results. Circulation. 83:1976–1986, 1991

    Article  CAS  PubMed  Google Scholar 

  25. Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340:115–126, 1999

    Article  CAS  PubMed  Google Scholar 

  26. Roy, T., A. D. Dueck, and G. A. Wright. Peripheral endovascular interventions in the era of precision medicine: tying wire, drug, and device selection to plaque morphology. J. Endovasc. Ther. 23:751–761, 2016

    Article  PubMed  Google Scholar 

  27. Roy, T., T. Forbes, G. Wright, and A. Dueck. Burning bridges: mechanisms and implications of endovascular failure in the treatment of peripheral artery disease. J. Endovasc. Ther. 22:874–880, 2015

    Article  PubMed  Google Scholar 

  28. Roy, T. L., H. J. Chen, A. D. Dueck, and G. A. Wright. Magnetic resonance imaging characteristics of lesions relate to the difficulty of peripheral arterial endovascular procedures. J. Vasc. Surg. 67:1844-1854.e2, 2018

    Article  PubMed  Google Scholar 

  29. Roy, T. L., M. A. Tavallaei, J. J. Zhou, and A. D. Dueck. Performance assessment of a novel steering catheter for crossing peripheral arterial occlusions. J. Vasc. Surg.70:e100, 2019

    Article  Google Scholar 

  30. Roy, T., G. Liu, N. Shaikh, A. D. Dueck, and G. A. Wright. Puncturing plaques: relating MRI characteristics of peripheral artery lesions to guidewire puncture forces. J. Endovasc. Ther. 24:35–46, 2017

    Article  PubMed  Google Scholar 

  31. Schiemann, M., R. Killmann, M. Kleen, N. Abolmaali, J. Finney, and T. J. Vogl. Vascular guide wire navigation with a magnetic guidance system: experimental results in a phantom. Radiology. 232:475–481, 2004

    Article  PubMed  Google Scholar 

  32. Schneider, P. Endovascular Skills: Guidewire and Catheter Skills for Endovascular Surgery. New York: Informa Healthcare USA, Inc., 2009

    Google Scholar 

  33. Srivatsa, S. S., W. D. Edwards, C. M. Boos, D. E. Grill, G. M. Sangiorgi, K. N. Garratt, R. S. Schwartz, and D. R. Holmes. Histologic correlates of angiographic chronic total coronary artery occlusions: influence of occlusion duration on neovascular channel patterns and intimal plaque composition. J. Am. Coll. Cardiol. 29:955–963, 1997

    Article  CAS  PubMed  Google Scholar 

  34. Subbotin, V. M. Analysis of arterial intimal hyperplasia: review and hypothesis. Theor. Biol. Med. Model. 4:41, 2007

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sung, H. W., Y. Chang, C. T. Chiu, C. N. Chen, and H. C. Liang. Mechanical properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent. Biomaterials. 20:1759–1772, 1999

    Article  CAS  PubMed  Google Scholar 

  36. Tavallaei, M. A., J. J. Zhou, T. L. Roy, and G. A. Wright. Performance assessment of a radiofrequency powered guidewire for crossing peripheral arterial occlusions based on lesion morphology. Ann. Biomed. Eng. 46:940–946, 2018

    Article  PubMed  Google Scholar 

  37. Venkatasubramanian, R. T., W. F. Wolkers, M. M. Shenoi, V. H. Barocas, D. Lafontaine, C. L. Soule, P. A. Iaizzo, and J. C. Bischof. Freeze–thaw induced biomechanical changes in arteries: role of collagen matrix and smooth muscle cells. Ann. Biomed. Eng. 2010 38:3. 38:694–706, 2010

    Google Scholar 

  38. Virani, S. S., et al. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation. 141:E139–E596, 2020

    Article  PubMed  Google Scholar 

  39. Woo, J., H. S. Song, H. J. Cha, and B. J. Yi. Advantage of steerable catheter and haptic feedback for a 5-DOF vascular intervention robot system. Appl. Sci. (Switz.). 9(20):4305, 2019

    Article  Google Scholar 

  40. Wood, N. B., S. Z. Zhao, A. Zambanini, M. Jackson, W. Gedroyc, S. A. Thom, A. D. Hughes, and X. Y. Xu. Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral arterial disease. J. Appl. Physiol. 101:1412–1418, 2006

    Article  CAS  PubMed  Google Scholar 

  41. Yu, B., J. D. G. Fernández, and T. Tan. Probabilistic kinematic model of a robotic catheter for 3D position control. Soft Robot. 6:184–194, 2019

    Article  PubMed  Google Scholar 

  42. Zhou, J. J., A. Quadri, A. Sewani, Y. Alawneh, R. Gilliland-Rocque, C. Magnin, A. Dueck, G. A. Wright, and M. A. Tavallaei. The CathPilot: a novel approach for accurate interventional device steering and tracking. IEEE/ASME Trans. Mechatron. 2022. https://doi.org/10.1109/TMECH.2022.3188955

    Article  PubMed  Google Scholar 

  43. Zielinski, L. P., M. M. Chowdhury, and P. A. Coughlin. Patient and institutional costs of failure of angioplasty of the superficial femoral artery. Ann. Vasc. Surg. 72:218–226, 2021

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Some of the co-authors are inventors of the CathPilot technology, that aims to address the limitations of conventional interventional devices characterized in this manuscript. Some of the co-authors are co-founders of Magellan Biomedical, Inc. a company that pursues the commercialization of the CathPilot technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ali Tavallaei.

Additional information

Associate Editor Arash Kheradvar oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alawneh, Y., Zhou, J.J., Sewani, A. et al. Experimental Protocol and Phantom Design and Development for Performance Characterization of Conventional Devices for Peripheral Vascular Interventions. Ann Biomed Eng 51, 1547–1557 (2023). https://doi.org/10.1007/s10439-023-03160-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03160-x

Keywords

Navigation