Skip to main content

Advertisement

Log in

Micro-CT Imaging and Mechanical Properties of Ovine Ribs

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The use of ovine animal models in the study of injury biomechanics and modeling is increasing, due to their favorable size and other physiological characteristics. Along with this increase, there has also been increased interest in the development of in silico ovine models for computational studies to compliment physical experiments. However, there remains a gap in the literature characterizing the morphological and mechanical characteristics of ovine ribs. The objective of this study therefore is to report anatomical and mechanical properties of the ovine ribs using microtomography (micro-CT) and two types of mechanical testing (quasi-static bending and dynamic tension). Using microtomography, young ovine rib samples obtained from a local abattoir were cut into approximately fourteen 38 mm sections and scanned. From these scans, the cortical bone thickness and cross-sectional area were measured, and the moment of inertia was calculated to enhance the mechanical testing data. Based on a standard least squares statistical model, the cortical bone thickness varied depending on the region of the cross-section and the position along the length of the rib (p < 0.05), whereas the cross-sectional area remained consistent (p > 0.05). Quasi-static three-point bend testing was completed on ovine rib samples, and the resulting force–displacement data was analyzed to obtain the stiffness (44.67 ± 17.65 N/mm), maximum load (170.54 ± 48.28 N) and displacement at maximum load (7.19 ± 2.75 mm), yield load (167.81 ± 48.12 N) and displacement at yield (6.10 ± 2.25 mm), and the failure load (110.90 ± 39.30 N) and displacement at failure (18.43 ± 2.10 mm). The resulting properties were not significantly affected by the rib (p > 0.05), but by the animal they originated from (p < 0.05). For the dynamic testing, samples were cut into coupons and tested in tension with an average strain rate of 18.9 strain/sec. The resulting dynamic testing properties of elastic modulus (5.16 ± 2.03 GPa), failure stress (63.29 ± 14.02 MPa), and failure strain (0.0201 ± 0.0052) did not vary based on loading rate (p > 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Appleyard, R. C., et al. Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthr. Cartil. 11(1):65–77, 2003. https://doi.org/10.1053/joca.2002.0867.

    Article  CAS  Google Scholar 

  2. Bass, C. R., et al. Injury risk in behind armor blunt thoracic trauma. Int. J. Occup. Saf. Ergon. 12(4):429–442, 2006. https://doi.org/10.1080/10803548.2006.11076702.

    Article  PubMed  Google Scholar 

  3. Biasutti, S., et al. Spatiotemporal variations in gene expression, histology and biomechanics in an ovine model of tendinopathy. PLoS ONE. 12(10):e0185282, 2017. https://doi.org/10.1371/journal.pone.0185282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brogden, K. A., V. C. Kalfa, M. R. Ackermann, D. E. Palmquist, P. B. McCray Jr., and B. F. Tack. The ovine cathelicidin SMAP29 kills ovine respiratory pathogens in vitro and in an ovine model of pulmonary infection. Antimicrob. Agents Chemother. 45(1):331–334, 2001. https://doi.org/10.1128/AAC.45.1.331-334.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Daryabari, S. S., et al. Development of an efficient perfusion-based protocol for whole-organ decellularization of the ovine uterus as a human-sized model and in vivo application of the bioscaffolds. J. Assist. Reprod. Genet. 36(6):1211–1223, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Easley, N. E., M. Wang, L. M. McGrady, and J. M. Toth. Biomechanical and radiographic evaluation of an ovine model for the human lumbar spine. Proc. Inst. Mech. Eng. H. 222(6):915–922, 2008. https://doi.org/10.1243/09544119JEIM345.

    Article  CAS  PubMed  Google Scholar 

  7. FSIS. Lamb from Farm to Table. (2020).

  8. Gibbons, M. M., X. Dang, M. Adkins, B. Powell, and P. Chan. Finite element modeling of blast lung injury in sheep. J. Biomech. Eng. 137(4):041002, 2015. https://doi.org/10.1115/1.4029181.

    Article  PubMed  Google Scholar 

  9. Gleiser, I., and E. Hunt. The estimation of age and sex of preadolescent children from bones and teeth. J. Am. J. Phys. Anthr. 13:479–488, 1955.

    Article  Google Scholar 

  10. Goldfarb, M. A., T. F. Ciurej, M. A. Weinstein, and L. W. Metker. "A method for soft body armor evaluation: medical assessment. EDGEWOOD ARSENAL ABERDEEN PROVING GROUND MD, 1975.

  11. Greer, A., D. Cronin, C. Salisbury, and K. Williams. Finite element modeling for the prediction of blast trauma. In: IUTAM Symposium on Impact Biomechanics: From Fundamental Insights to Applications, Springer, 2005, pp. 263–271.

    Chapter  Google Scholar 

  12. Hanlon, E., and P. Gillich. Origin of the 44-mm behind-armor blunt trauma standard. Mil. Med. 177(3):333–339, 2012. https://doi.org/10.7205/milmed-d-11-00303.

    Article  PubMed  Google Scholar 

  13. Harris, A. Towards an ovine model of cystic fibrosis. Hum. Mol. Genet. 6(13):2191–2194, 1997. https://doi.org/10.1093/hmg/6.13.2191.

    Article  CAS  PubMed  Google Scholar 

  14. Holcombe, S. A., Y. S. Kang, B. A. Derstine, S. C. Wang, and A. M. Agnew. “Regional maps of rib cortical bone thickness and cross-sectional geometry,” (in eng). J. Anatomy. 235(5):883–891, 2019. https://doi.org/10.1111/joa.13045.

    Article  Google Scholar 

  15. Hurtig, M. B., et al. Preclinical studies for cartilage repair: recommendations from the international cartilage repair society. Cartilage. 2(2):137–152, 2011. https://doi.org/10.1177/1947603511401905.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Johnson, D. L., J. T. Yelverton, W. Hicks, and R. Doyal. Blast overpressure studies with animals and man: biological response to complex blast waves. EG and G INC ALBUQUERQUE NM, 1993.

  17. Katzenberger, M. J., D. L. Albert, A. M. Agnew, and A. R. Kemper. Effects of sex, age, and two loading rates on the tensile material properties of human rib cortical bone. J. Mech. Behav. Biomed. Mater. 102:103410, 2020. https://doi.org/10.1016/j.jmbbm.2019.103410.

    Article  CAS  PubMed  Google Scholar 

  18. A. R. Kemper, C. McNally, C. A. Pullins, L. J. Freeman, S. M. Duma, and S. W. J. S. c. c. j. Rouhana, The biomechanics of human ribs: material and structural properties from dynamic tension and bending tests, vol. 51, p. 235, 2007.

  19. Lau, A., M. L. Oyen, R. W. Kent, D. Murakami, and T. Torigaki. Indentation stiffness of aging human costal cartilage. Acta Biomater. 4(1):97–103, 2008. https://doi.org/10.1016/j.actbio.2007.06.008.

    Article  PubMed  Google Scholar 

  20. Li, Z., et al. Rib fractures under anterior–posterior dynamic loads: experimental and finite-element study. J. Biomech. 43(2):228–234, 2010.

    Article  PubMed  Google Scholar 

  21. Li, S., E. Demirci, and V. V. Silberschmidt. Variability and anisotropy of mechanical behavior of cortical bone in tension and compression. J. Mech. Behav. Biomed. Mater. 21:109–120, 2013.

    Article  PubMed  Google Scholar 

  22. MacFadden, L. N., P. C. Chan, K. H. Ho, and J. H. Stuhmiller. A model for predicting primary blast lung injury. J. Trauma Acute Care Surg. 73(5):1121–1129, 2012. https://doi.org/10.1097/TA.0b013e31825c1536.

    Article  PubMed  Google Scholar 

  23. Matute-Bello, G., C. W. Frevert, and T. R. Martin. Animal models of acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 295(3):L379–L399, 2008. https://doi.org/10.1152/ajplung.00010.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ministry of Agriculture Food, and Rural Affairs. Factsheet 19–011, AGDEX 434/10. Predicting Lamb Finishing Dates. Mmm. 1:10, 2019.

    Google Scholar 

  25. Moainie, S. L., et al. An ovine model of postinfarction dilated cardiomyopathy. Ann. Thorac. Surg. 74(3):753–760, 2002. https://doi.org/10.1016/s0003-4975(02)03827-4.

    Article  PubMed  Google Scholar 

  26. Moreno, J., and F. Forriol. Effects of preservation on the mechanical strength and chemical composition of cortical bone: an experimental study in sheep femora. Biomaterials. 23(12):2615–2619, 2002. https://doi.org/10.1016/s0142-9612(01)00402-1.

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen, T. V., et al. Sex differences in bone mass acquisition during growth: the fels longitudinal study. J. Clin. Densitom. 4(2):147–157, 2001. https://doi.org/10.1385/JCD:4:2:147.

    Article  CAS  PubMed  Google Scholar 

  28. D. O'Brien and S. Wideius. Preparing for the breeding season in meat goats and hair sheep. (2018). Virginia Cooperative Extension. Virginia Tech.

  29. Oftadeh, R., M. Perez-Viloria, J. C. Villa-Camacho, A. Vaziri, and A. Nazarian. Biomechanics and mechanobiology of trabecular bone: a review (in eng). J. Biomech. Eng. 137(1):0108021–01080215, 2015. https://doi.org/10.1115/1.4029176.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ottenio, M., D. Tran, A. NiAnnaidh, M. D. Gilchrist, and K. Bruyere. Strain rate and anisotropy effects on the tensile failure characteristics of human skin. J. Mech. Behav. Biomed. Mater. 41:241–50, 2015. https://doi.org/10.1016/j.jmbbm.2014.10.006.

    Article  CAS  PubMed  Google Scholar 

  31. Pezowicz, C., and M. Glowacki. The mechanical properties of human ribs in young adult. Acta Bioeng. Biomech. 14(2):53–60, 2012.

    PubMed  Google Scholar 

  32. Prevrhal, S., K. Engelke, and W. A. Kalender. Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys. Med. Biol. 44(3):751–764, 1999. https://doi.org/10.1088/0031-9155/44/3/017.

    Article  CAS  PubMed  Google Scholar 

  33. Reichert, J. C., et al. Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies. Tissue Eng. Part B. 16(1):93–104, 2010. https://doi.org/10.1089/ten.TEB.2009.0455.

    Article  Google Scholar 

  34. Rynkevic, R., P. Martins, L. Hympanova, H. Almeida, A. A. Fernandes, and J. Deprest. Biomechanical and morphological properties of the multiparous ovine vagina and effect of subsequent pregnancy. J. Biomech. 57:94–102, 2017. https://doi.org/10.1016/j.jbiomech.2017.03.023.

    Article  PubMed  Google Scholar 

  35. Thomas, P. K., L. K. Sullivan, G. H. Dickinson, C. M. Davis, and A. G. Lau. The effect of helium ion radiation on the material properties of bone. Calcif. Tissue Int. 108(6):808–818, 2021. https://doi.org/10.1007/s00223-021-00806-7.

    Article  CAS  PubMed  Google Scholar 

  36. Ulrich, D., et al. Influence of reproductive status on tissue composition and biomechanical properties of ovine vagina. PLoS ONE. 9(4):e93172, 2014. https://doi.org/10.1371/journal.pone.0093172.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wei, A., et al. BMP13 prevents the effects of annular injury in an ovine model. Int. J. Biol. Sci. 5(5):388–396, 2009. https://doi.org/10.7150/ijbs.5.388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wilson, S., et al. An ovine model of spinal cord injury. J. Spinal Cord. Med. 40(3):346–360, 2017. https://doi.org/10.1080/10790268.2016.1222475.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Veryst Engineering, LLC for running the high-rate tests and the DEVCOM Army Research Lab for funding this project (#W911NF2120034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Scott Gayzik.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Moment of inertia table.

CT Scan

Recon

Long, outer (a)

Short, outer (b)

Long, inner (c)

Short, INNER (d)

MOI (mm4)

Rib 3 Scan 4

2

6.14

1.76

5.71

0.82

200.1

Rib 4 Scan 7

2

5.82

1.84

5.51

1.28

116.72

Rib 5 Scan 10

2

4.82

1.82

4.48

1.07

84.5

Rib 6 Scan 13

2

5.27

1.87

4.87

1.07

117.9

Median

     

117.31

Standard Deviation

     

49.35206

Mean

     

129.805

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, P.K., Caffrey, J., Afetse, K.E. et al. Micro-CT Imaging and Mechanical Properties of Ovine Ribs. Ann Biomed Eng 51, 1513–1522 (2023). https://doi.org/10.1007/s10439-023-03156-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03156-7

Keywords

Navigation