Skip to main content

Advertisement

Log in

An In-Vitro Study of the Flow Past a Transcatheter Aortic Valve Using Time-Resolved 3D Particle Tracking

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The performance of a transcatheter aortic valve (TAV) can be evaluated by analyzing the flow field downstream of the valve. However, three dimensional flow and pressure fields, and particle residence time, a quantity closely related to thrombosis risk, are challenging to obtain. This experimental study aims to provide a comprehensive 3D measurement of the flow field downstream of an Edwards SAPIEN 3 using time-resolved 3D particle tracking velocimetry (3D PTV) with Shake-the-Box (STB) algorithm. The valve was deployed in an idealized aorta model and tested in a left heart simulator under physiological conditions. Detailed 3D vortical structures, pressure distributions, and particle residence time were obtained by analyzing the 3D particle tracks. Results have shown large-scale retrograde flow entering the sinuses of the TAV at systole, reducing flow stasis there. However, the 3D particle tracks reveal that the retrograde flow has a high residence time and might have already experienced high shear stress near the main jet. Thus by only focusing on the flow in the sinus region is not sufficient to evaluate the leaflet thrombosis risk, and the flow downstream of the valve should be taken into consideration. The unique perspectives offered by 3D PTV are important when evaluating the performance of the TAVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Agarwal, K., O. Ram, J. Wang, Y. Lu, and J. Katz. Reconstructing velocity and pressure from noisy sparse particle tracks using constrained cost minimization. Exp Fluids. 62:2021, 2021.

    Article  Google Scholar 

  2. Brindise, M. C., M. M. Busse, and P. P. Vlachos. Density and viscosity matched newtonian and non-newtonian blood-analog solutions with PDMS Refractive Index. Exp Fluids. 59:2018, 2018.

    Article  Google Scholar 

  3. Corso, P., U. Gulan, N. Cohrs, W. J. Stark, F. Duru, and M. Holzner. Comprehensive in vitro study of the flow past two transcatheter aortic valves: comparison with a severe stenotic case. Ann Biomed Eng. 47:2241–2257, 2019.

    Article  PubMed  Google Scholar 

  4. de Kat, R., and B. W. van Oudheusden. Instantaneous planar pressure determination from PIV in turbulent flow. Exp Fluids. 52:1089–1106, 2011.

    Article  Google Scholar 

  5. De Paulis, R., G. M. De Matteis, P. Nardi, R. Scaffa, C. Bassano, and L. Chiariello. Analysis of valve motion after the reimplantation type of valve-sparing procedure (David I) with a new aortic root conduit. Ann Thorac Surg. 74:53–57, 2002.

    Article  PubMed  Google Scholar 

  6. Duncan, D. D., C. B. Bargeron, S. E. Borchardt, O. J. Deters, S. A. Gearhart, F. F. Mark, and M. H. Friedman. The effect of compliance on wall shear in casts of a human aortic bifurcation. J Biomech Eng. 112:183–188, 1990.

    Article  CAS  PubMed  Google Scholar 

  7. Farag, E. S., J. Vendrik, P. van Ooij, Q. L. Poortvliet, F. van Kesteren, L. W. Wollersheim, A. Kaya, A. H. G. Driessen, J. J. Piek, K. T. Koch, J. Baan, R. N. Planken, J. Kluin, A. J. Nederveen, and B. de Mol. Transcatheter aortic valve replacement alters ascending aortic blood flow and wall shear stress patterns: a 4D flow MRI comparison with age-matched, elderly controls. Eur Radiol. 29:1444–1451, 2019.

    Article  CAS  PubMed  Google Scholar 

  8. Garcia, D., J. G. Dumesnil, L.-G. Durand, L. Kadem, and P. Pibarot. Discrepancies between catheter and Doppler estimates of valve effective orifice area can be predicted from the pressure recovery phenomenon. J Am Coll Cardiol. 41:435–442, 2003.

    Article  PubMed  Google Scholar 

  9. Geoghegan, P. H., N. A. Buchmann, C. J. T. Spence, S. Moore, and M. Jermy. Fabrication of rigid and flexible refractive-index-matched flow phantoms for flow visualisation and optical flow measurements. Exp Fluids. 52:1331–1347, 2012.

    Article  CAS  Google Scholar 

  10. Ghidaoui, M. S., M. Zhao, D. A. McInnis, and D. H. Axworthy. A review of water hammer theory and practice. Appl Mech Rev. 58:49–76, 2005.

    Article  Google Scholar 

  11. Gilmanov, A., T. B. Le, and F. Sotiropoulos. A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. J Comput Phys. 300:814–843, 2015.

    Article  CAS  Google Scholar 

  12. Graf, T., H. Fischer, H. Reul, and G. Rau. Cavitation potential of mechanical heart valve prostheses. Int J Artif Org. 14:169–174, 2018.

    Article  Google Scholar 

  13. Haller Lagrangian, G., and Coherent Structures. Ann Rev Fluid Mech. 47:137–162, 2015.

    Article  Google Scholar 

  14. Hasler, D., A. Landolt, and D. Obrist. Tomographic PIV behind a prosthetic heart valve. Exp Fluids. 57:2016, 2016.

    Article  Google Scholar 

  15. Hasler, D., and D. Obrist. Three-dimensional flow structures past a bio-prosthetic valve in an in-vitro model of the aortic root. PLoS ONE.13:e0194384, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hatoum, H., R. T. Hahn, S. Lilly, and L. P. Dasi. Differences in pressure recovery between balloon expandable and self-expandable transcatheter aortic valves. Ann Biomed Eng. 48:860–867, 2020.

    Article  PubMed  Google Scholar 

  17. Hatoum, H., B. L. Moore, and L. P. Dasi. On the significance of systolic flow waveform on aortic valve energy loss. Ann Biomed Eng. 46:2102–2111, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hatoum, H., A. Yousefi, S. Lilly, P. Maureira, J. Crestanello, and L. P. Dasi. An in vitro evaluation of turbulence after transcatheter aortic valve implantation. J Thorac Cardiovasc Surg. 156:1837–1848, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Heinrich, R. S., A. A. Fontaine, R. Y. Grimes, A. Sidhaye, S. Yang, K. E. Moore, R. A. Levine, and A. P. Yoganathan. Experimental analysis of fluid mechanical energy losses in aortic valve stenosis: importance of pressure recovery. Ann Biomed Eng. 24:685–694, 1996.

    Article  CAS  PubMed  Google Scholar 

  20. Hunt J. C., A. A. Wray and P. Moin. Eddies, streams, and convergence zones in turbulent flows. In: Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program NASA Technical Reports, 1988, pp. 193–208.

  21. Jeronimo, M. D., and D. E. Rival. Particle Residence Time in pulsatile post-stenotic flow. Phys Fluids. 32:2020, 2020.

    Article  Google Scholar 

  22. Jeronimo, M. D., K. Zhang, and D. E. Rival. Direct Lagrangian measurements of particle residence time. Exp Fluids. 60:2019, 2019.

    Article  Google Scholar 

  23. Jin, S., J. Oshinski, and D. P. Giddens. Effects of wall motion and compliance on flow patterns in the ascending aorta. J Biomech Eng. 125:347–354, 2003.

    Article  PubMed  Google Scholar 

  24. Khojasteh, A. R., Y. Yang, D. Heitz, and S. Laizet. Lagrangian coherent track initialization. Phys Fluids. 33:2021, 2021.

    Article  Google Scholar 

  25. Lancellotti, P., P. Pibarot, J. Chambers, T. Edvardsen, V. Delgado, R. Dulgheru, M. Pepi, B. Cosyns, M. R. Dweck, M. Garbi, J. Magne, K. Nieman, R. Rosenhek, A. Bernard, J. Lowenstein, M. L. Vieira, A. Rabischoffsky, R. H. Vyhmeister, X. Zhou, Y. Zhang, J. L. Zamorano, and G. Habib. Recommendations for the imaging assessment of prosthetic heart valves: a report from the European Association of Cardiovascular Imaging endorsed by the Chinese Society of Echocardiography, the Inter-American Society of Echocardiography, and the Brazilian Department of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 17:589–590, 2016.

    Article  PubMed  Google Scholar 

  26. Laskey, W. K., and W. G. Kussmaul. Pressure recovery in aortic valve stenosis. Circulation. 89:116–121, 1994.

    Article  CAS  PubMed  Google Scholar 

  27. Liu, X., and J. Katz. Instantaneous pressure and material acceleration measurements using a four-exposure PIV system. Exp Fluids. 41:227–240, 2006.

    Article  Google Scholar 

  28. Mao, W., K. Li, and W. Sun. Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc Eng Technol. 7:374–388, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Midha, P. A., V. Raghav, R. Sharma, J. F. Condado, I. U. Okafor, T. Rami, G. Kumar, V. H. Thourani, H. Jilaihawi, V. Babaliaros, R. R. Makkar, and A. P. Yoganathan. The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neosinus. Circulation. 136:1598–1609, 2017.

    Article  PubMed  Google Scholar 

  30. Mikell, F. L., R. W. Asinger, K. J. Elsperger, W. R. Anderson, and M. Hodges. Regional stasis of blood in the dysfunctional left ventricle: echocardiographic detection and differentiation from early thrombosis. Circulation. 66:755–763, 1982.

    Article  CAS  PubMed  Google Scholar 

  31. Polanczyk, A., M. Klinger, J. Nanobachvili, I. Huk, and C. Neumayer. Artificial circulatory model for analysis of human and artificial vessels. Appl Sci. 8:2018, 2018.

    Article  Google Scholar 

  32. Reul, H., A. Vahlbruch, M. Giersiepen, T. Schmitz-Rode, V. Hirtz, and S. Effert. The geometry of the aortic root in health, at valve disease and after valve replacement. J Biomech. 23:181–191, 1990.

    Article  CAS  PubMed  Google Scholar 

  33. Robicsek, F., and M. J. Thubrikar. Role of sinus wall compliance in aortic leaflet function. Am J Cardiol. 84:944–946, 1999.

    Article  CAS  PubMed  Google Scholar 

  34. Samaee, M., H. Hatoum, M. Biersmith, B. Yeats, S. C. Gooden, V. H. Thourani, R. T. Hahn, S. Lilly, A. Yoganathan, and L. P. Dasi. Gradient and pressure recovery of a self-expandable transcatheter aortic valve depends on ascending aorta size: In vitro study. JTCVS Open. 9:28–38, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sammour, Y., K. Banerjee, A. Kumar, H. Lak, S. Chawla, C. Incognito, J. Patel, M. Kaur, O. Abdelfattah, L. G. Svensson, E. M. Tuzcu, G. W. Reed, R. Puri, J. Yun, A. Krishnaswamy, and S. Kapadia. Systematic approach to high implantation of SAPIEN-3 valve achieves a lower rate of conduction abnormalities including pacemaker implantation. Circ Cardiovasc Interv. 14:e009407, 2021.

    Article  CAS  PubMed  Google Scholar 

  36. Schanz, D., S. Gesemann, and A. Schröder. Shake-The-Box: Lagrangian particle tracking at high particle image densities. Exp Fluids. 57:2016, 2016.

    Article  Google Scholar 

  37. Schanz, D., S. Gesemann, A. Schröder, B. Wieneke, and M. Novara. Non-uniform optical transfer functions in particle imaging: calibration and application to tomographic reconstruction. Measur Sci Technol. 24:2013, 2013.

    Article  Google Scholar 

  38. Schneiders, J. F. G., R. P. Dwight, and F. Scarano. Time-supersampling of 3D-PIV measurements with vortex-in-cell simulation. Exp Fluids. 55:2014, 2014.

    Article  Google Scholar 

  39. Schneiders, J. F. G., and F. Scarano. Dense velocity reconstruction from tomographic PTV with material derivatives. Exp Fluids. 57:2016, 2016.

    Article  Google Scholar 

  40. Sheng, J., E. Malkiel, and J. Katz. Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer. Exp Fluids. 45:1023–1035, 2008.

    Article  Google Scholar 

  41. Sirois, E., W. Mao, K. Li, J. Calderan, and W. Sun. Simulated transcatheter aortic valve flow: implications of elliptical deployment and under-expansion at the aortic annulus. Artif Organs. 42:E141–E152, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sotiropoulos, F., T. B. Le, and A. Gilmanov. Fluid mechanics of heart valves and their replacements. Ann Rev Fluid Mech. 48:259–283, 2016.

    Article  Google Scholar 

  43. Spevack, D. M., K. Almuti, R. Ostfeld, R. Bello, and G. M. Gordon. Routine adjustment of Doppler echocardiographically derived aortic valve area using a previously derived equation to account for the effect of pressure recovery. J Am Soc Echocardiogr. 21:34–37, 2008.

    Article  PubMed  Google Scholar 

  44. Timms, D., M. Hayne, K. McNeil, and A. Galbraith. A complete mock circulation loop for the evaluation of left, right, and biventricular assist devices. Artif Org. 29:564–572, 2005.

    Article  Google Scholar 

  45. Trusty, P. M., S. S. Bhat, V. Sadri, M. T. Salim, E. Funnell, N. Kamioka, R. Sharma, R. Makkar, V. Babaliaros, and A. P. Yoganathan. The role of flow stasis in transcatheter aortic valve leaflet thrombosis. J Thorac Cardiovasc Surg. 164:e105–e117, 2022.

    Article  PubMed  Google Scholar 

  46. van Gent, P. L., D. Michaelis, B. W. van Oudheusden, P. É. Weiss, R. de Kat, A. Laskari, Y. J. Jeon, L. David, D. Schanz, F. Huhn, S. Gesemann, M. Novara, C. McPhaden, N. J. Neeteson, D. E. Rival, J. F. G. Schneiders, and F. F. J. Schrijer. Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and Lagrangian particle tracking. Exp Fluids. 58:2017, 2017.

    Google Scholar 

  47. van Oudheusden, B. W. PIV-based pressure measurement. Measur Sci Technol. 24:2013, 2013.

    Google Scholar 

  48. Wang, J., C. Zhang, and J. Katz. GPU-based, parallel-line, omni-directional integration of measured pressure gradient field to obtain the 3D pressure distribution. Exp Fluids. 60:2019, 2019.

    Article  Google Scholar 

  49. Westerweel, J., and F. Scarano. Universal outlier detection for PIV data. Exp Fluids. 39:1096–1100, 2005.

    Article  Google Scholar 

  50. Wieneke, B. Volume self-calibration for 3D particle image velocimetry. Exp Fluids. 45:549–556, 2008.

    Article  Google Scholar 

  51. Wunsch, C. The Ocean Circulation Inverse Problem. Cambridge: Cambridge University Press, 2010.

    Google Scholar 

  52. Wylie, B., V. Streeter, and L. Suo. Fluid Transients in Systems. Englewood Cliffs, NJ: Prentice Hall, 1993.

    Google Scholar 

  53. Yazdi, S. G., P. H. Geoghegan, P. D. Docherty, M. Jermy, and A. Khanafer. A review of arterial phantom fabrication methods for flow measurement using PIV techniques. Ann Biomed Eng. 46:1697–1721, 2018.

    Article  PubMed  Google Scholar 

  54. Zhang, C., J. Wang, W. Blake, and J. Katz. Deformation of a compliant wall in a turbulent channel flow. J Fluid Mech. 823:345–390, 2017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Prasad Dasi.

Ethics declarations

Conflict of interest

Dr. Dasi reports having patent applications filed on novel polymeric valves, vortex generators and superhydrophobic/omniphobic surfaces. Dr. Dasi and Dr. Chen have patents pending on predictive computational modeling in TAVR. Dr. Dasi is a co-founder and stockholder of DasiSimulations LLC and YoungHeartValve Inc. No other conflicts were reported.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 335 KB).

Supplementary file2 (M4V 43533 KB).

Supplementary file3 (M4V 23415 KB).

Supplementary file4 (M4V 25477 KB).

Supplementary file5 (M4V 54057 KB).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Dasi, L.P. An In-Vitro Study of the Flow Past a Transcatheter Aortic Valve Using Time-Resolved 3D Particle Tracking. Ann Biomed Eng 51, 1449–1460 (2023). https://doi.org/10.1007/s10439-023-03147-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03147-8

Keywords

Navigation