Skip to main content
Log in

A New Phantom that Simulates Electrically a Human Blood Vessel Surrounded by Tissues: Development and Validation Against In-Vivo Measurements

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study aims to develop a phantom that simulates the electrical properties of a human blood vessel surrounded by tissues, inside which bubbles can be infused to mimic Decompression Sickness (DCS) conditions. This phantom may be used to calibrate novel electrical methods for bubbles detection in humans and study bubble dynamics during DCS. It may contribute to the limitation of in-vivo trials and time/effort saving, while its use can be extended to other biomedical applications. To facilitate the design of the phantom, we perform first in-vitro measurements in a flow-loop and in-vivo measurements in a swine, in order to detect infused bubbles of a few tenths μm—representing Decompression Sickness conditions—in the test liquid flow and blood flow, respectively, by means of “I-VED” EU patented electrical impedance spectroscopy technique. Results show that the proposed phantom, consisting of a spongy specimen soaked in agar gel in the presence of electrolyte with a hole along it, simulates adequately the electrical properties of a human blood vessel surrounded by tissues. I-VED demonstrates pretty high sensitivity to sense micro-bubbles over the partially conductive vessel walls of the phantom or the isolated animal vein, as well as in the flow-loop: bubbles presence increases electrical impedance and causes intense signal fluctuations around its mean value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adams, F., T. Qiu, A. Mark, B. Fritz, L. Kramer, D. Schlager, U. Wetterauer, A. Miernik, and P. Fischer. Soft 3D-printed phantom of the human kidney with collecting system. Ann. Biomed. Eng. 45:963–972, 2017.

    Article  PubMed  Google Scholar 

  2. Anand, G., A. Lowe, and A. Al-Jumaily. Tissue phantoms to mimic the dielectric properties of human forearm section for multi-frequency bioimpedance analysis at low frequencies. Mat. Sci. Eng. C. 96:496–508, 2019.

    Article  CAS  Google Scholar 

  3. Brzozowski, P., K. I. Penev, and K. Mequanint. Gellan gum gel tissue phantoms and gel dosimeters with tunable electrical, mechanical and dosimetric properties. Int. J. Biol. Macromol. 180:332–338, 2021.

    Article  CAS  PubMed  Google Scholar 

  4. Evgenidis, S., and T. Karapantsios. Effect of bubble size on void fraction fluctuations in dispersed bubble flows. Int. J. Multiph. Flow. 75:163–173, 2015.

    Article  CAS  Google Scholar 

  5. Evgenidis, S., and T. Karapantsios. Gas–liquid flow of sub-millimeter bubbles at low void fractions: experimental study of bubble size distribution and void fraction. Int. J. Heat Fluid Fl. 71:353–365, 2018.

    Article  Google Scholar 

  6. Evgenidis, S. P., and T. D. Karapantsios. Gas–liquid flow of sub-millimeter bubbles at low void fractions: Void fraction prediction using drift-flux model. Exp. Therm. Fluid. Sci. 98:195–205, 2018.

    Article  CAS  Google Scholar 

  7. Faes, T. J. C., H. A. van der Meij, J. C. de Munck, and R. M. Heethaar. The electric resistivity of human tissues (100 Hz–10 MHz): a meta-analysis of review studies. Physiol. Meas. 20:R1, 1999.

    Article  CAS  PubMed  Google Scholar 

  8. Gaillard, T., M. Roche, C. Honorez, M. Jumeau, A. Balan, C. Jedrzejszyk, and W. Drenckhan. Controlled foam generation using cyclic diphasic flows through a constriction. Int. J. Multiphas. Flow. 96:173–187, 2017.

    Article  CAS  Google Scholar 

  9. Gkotsis, P., S. P. Evgenidis, and T. D. Karapantsios. Associating void fraction signals with bubble clusters features in co-current, upward gas-liquid flow of a non-Newtonian liquid. Int. J. Multiphas. Flow. 131:103297, 2020.

    Article  CAS  Google Scholar 

  10. Gkotsis, P., S. P. Evgenidis, and T. D. Karapantsios. Influence of Newtonian and non-Newtonian fluid behaviour on void fraction and bubble size for a gas-liquid flow of sub-millimeter bubbles at low void fractions. Exp. Therm. Fluid. Sci. 109:109912, 2019.

    Article  CAS  Google Scholar 

  11. Kaser, T. Swine as biomedical animal model for T-cell research—Success and potential for transmittable and non-transmittable human diseases. Mol. Immunol. 135:95–115, 2021.

    Article  CAS  PubMed  Google Scholar 

  12. Le, D. Q., P. A. Dayton, F. Tillmans, J. Freiberger, R. Moon, P. Denoble, and V. Papadopoulou. Ultrasound in decompression research: fundamentals, considerations, and future technologies. Undersea Hyperb. Med. 48(1):59–72, 2021.

    Article  PubMed  Google Scholar 

  13. Li, Y., R. Ma, X. Wang, J. Jin, H. Wang, Z. Liu, and T. Yin. Tissue coefficient of bioimpedance spectrometry as an index to discriminate different tissues in vivo. Biocybern. Biomed. Eng. 39(3):923–936, 2019.

    Article  Google Scholar 

  14. Maxwell, J. C. A Treatise of Electricity and Magnetism. London: Oxford University Press, 1892.

    Google Scholar 

  15. Nebuya, S., M. Noshiro, B. H. Brown, R. H. Smallwood, and P. Milnes. Detection of emboli in vessels using electrical impedance measurements—phantom and electrodes. Physiol. Meas. 26:111–118, 2005.

    Article  Google Scholar 

  16. Oikonomidou, O., S. P. Evgenidis, M. Kostoglou, and T. D. Karapantsios. Degassing of a pressurized liquid saturated with dissolved gas when injected to a low pressure liquid pool. Exp. Therm. Fluid Sci. 96:347–357, 2018.

    Article  CAS  Google Scholar 

  17. Papadopoulou, V., S. Evgenidis, R. J. Eckersley, T. Mesimeris, C. Balestra, M. Kostoglou, T. D. Karapantsios, and M. X. Tang. Decompression induced bubble dynamics on ex vivo fat and muscle tissue surfaces with a new experimental set up. Colloids Surf. B. 129:121–129, 2015.

    Article  CAS  Google Scholar 

  18. Polanczyk, A., M. Klinger, J. Nanobachvili, I. Huk, and C. Neumayer. Artificial circulatory model for analysis of human and artificial vessels. Appl. Sci. 8:1017, 2018.

    Article  Google Scholar 

  19. Polanczyk, A., M. Podgorski, M. Polanczyk, A. Piechota-Polanczyk, C. Neumayer, and L. Stefanczyk. A novel patient-specific human cardiovascular system phantom (HCSP) for reconstructions of pulsatile blood hemodynamic inside abdominal aortic aneurysm. IEEE Access. 6:61896–61903, 2018.

    Article  Google Scholar 

  20. Polanczyk, A., M. Podgorski, M. Polanczyk, A. Piechota-Polanczyk, L. Stefanczyk, and M. Strzelecki. A novel vision-based system for quantitative analysis of abdominal aortic aneurysm deformation. Biomed. Eng. OnLine. 18:56, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Prasad, A., and M. Roy. Bioimpedance analysis of vascular tissue and fluid flow in human and plant body: a review. Biosyst. Eng. 197:170–187, 2020.

    Article  Google Scholar 

  22. Rajeshkumar, G., R. Vishnupriyan, and S. Selvadeepak. Tissue mimicking material an idealized tissue model for clinical applications: a review. Mater. Today. 22:2696–2703, 2020.

    CAS  Google Scholar 

  23. Rivera, M., E. Lopez, and S. Cancelos. A non-invasive, low frequency resonant method to detect bubbles in liquid media. Appl. Acoust. 179:108044, 2021.

    Article  Google Scholar 

  24. Serafin, A., C. Murphy, M. C. Rubio, and M. N. Collins. Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. Mater. Sci. Eng. C. 122:111927, 2021.

    Article  CAS  Google Scholar 

  25. Sharma, G., M. Naushad, B. Thakur, A. Kumar, P. Negi, R. Saini, A. Chahai, F. J. Stadler, and U. M. H. Aqil. Sodium dodecyl sulphate-supported nanocomposite as drug carrier system for controlled delivery of ondansetron. Int. J. Environ. Res. Public Health. 15:414, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Swan, J. G., J. C. Wilbur, K. L. Moodie, S. A. Kane, D. A. Knaus, D. Phillips, T. L. Beach, A. M. Fellows, P. J. Magari, and J. C. Buckey. Microbubbles are detected prior to larger bubbles following decompression. J. Appl. Physiol. 116:790–796, 2014.

    Article  CAS  PubMed  Google Scholar 

  27. Tan, X., D. Li, M. Jeong, T. Yu, Z. Ma, S. Afat, K.-E. Grund, and T. Qiu. Soft liver phantom with a hollow biliary system. Ann. Biomed. Eng. 49(9):2139–2149, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vann, R. D., F. K. Butler, J. Mitchell, and R. E. Moon. Decompression illness. Lancet. 377:153–164, 2011.

    Article  PubMed  Google Scholar 

  29. Vine, S. M., P. L. Painter, M. A. Kuskowski, and C. P. Earthman. Bioimpedance spectroscopy for the estimation of fat-free mass in end-stage renal disease. E. Spen. Eur. E-J. Clin. Nutr. Metab. 6:e1–e6, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Windberger, U., A. Bartholovitsch, R. Plasenzotti, K. J. Korak, and G. Heinze. Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data. Exp. Physiol. 88(3):431–440, 2003.

    Article  CAS  PubMed  Google Scholar 

  31. Zabulis, X., M. Papara, A. Chatziargyriou, and T. D. Karapantsios. Detection of densely dispersed spherical bubbles in digital images based on a template matching technique: application to wet foams. Colloids Surf. A. 309:96–106, 2007.

    Article  CAS  Google Scholar 

  32. Zhai, L. S., H. M. Wang, C. Yan, H. X. Zhang, and N. D. Jin. Development of empirical correlation to predict droplet size of oil-in-water flows using a multi-scale Poincaré plot. Exp. Therm. Fluid. Sci. 98:290–302, 2018.

    Article  Google Scholar 

  33. Zuang, J., Y. Jinag, H. Ji, B. Wang, and Z. Huang. Electrical impedance characteristics of slug flow in small channels and its application to void fraction estimation. Int. J. Multiphas. Flow. 156:104200, 2022.

    Article  Google Scholar 

Download references

Acknowledgments

Authors are really thankful to Prof. L. Papazoglou, Prof. I. Savvas, Prof. M. Patsikas and Dr. K. Pavlidou from the Faculty of Veterinary Medicine (Aristotle University of Thessaloniki, Greece) for their contribution in organizing and performing in-vivo trial. This study was funded by GSTP Project: In-Vivo Embolic Detector, I-VED-Contract No.: 4000101764. The view expressed herein can in no way be taken to reflect the official opinion of the European Space Agency.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotiris P. Evgenidis.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evgenidis, S.P., Chondrou, A. & Karapantsios, T.D. A New Phantom that Simulates Electrically a Human Blood Vessel Surrounded by Tissues: Development and Validation Against In-Vivo Measurements. Ann Biomed Eng 51, 1284–1295 (2023). https://doi.org/10.1007/s10439-022-03131-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03131-8

Keywords

Navigation