Skip to main content
Log in

Simulation Modeling of Air and Droplet Temperatures in the Human Respiratory Tract for Inhaled Tobacco Products

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Respiratory tract dosimetry predictions for inhalation of tobacco product smoke and aerosols are sensitive to the values of the physicochemical properties of constituents that make up the puff. Physicochemical property values may change significantly with temperature, particularly in the oral cavity and upper airways of the lung, where the puff undergoes adjustments from high temperatures in the tobacco product to reach body temperature. The assumption of fixed property values may introduce uncertainties in the predicted doses in these and other airways of the lung. To obtain a bound for the uncertainties and improve dose predictions, we studied temperature evolution of the inhaled puff in the human respiratory tract during different puff inhalation events. Energy equations were developed for the transport of the puff in the respiratory tract and were solved to find air and droplet temperatures throughout the respiratory tract during two puffing scenarios: 1. direct inhalation of the puff into the lung with no pause in the oral cavity, and 2. puff withdrawal, mouth hold, and puff delivery to the lung via inhalation of dilution air. These puffing scenarios correspond to the majority of smoking scenarios. Model predictions showed that temperature effects were most significant during puff withdrawal. Otherwise, the puff reached thermal equilibrium with the body. Findings from this study will improve predictions of deposition and uptake of puff constituents, and therefore inform inhalation risk assessment from use of electronic nicotine delivery systems (ENDS) and combusted cigarettes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Airey, J. The numerical calculation of the roots of the Bessel function Jn(x) and its first derivative Jn’(x). Lond. Edinb. Dubl. Phil. Mag. 34(201):189–195, 1917.

    Article  Google Scholar 

  2. Asgari, M., F. Lucci, J. Bialek, B. Dunan, G. Andreatta, R. Smajda, S. Lani, N. Blondiaux, S. Majeed, S. Steiner, J.-P. Schaller, S. Frentzel, J. Hoeng, and A. K. Kuczaj. Development of a realistic human respiratory tract cast representing physiological thermal conditions. Aerosol Sci. Technol. 53:860–870, 2019.

    Article  CAS  Google Scholar 

  3. Asgharian, B., O. T. Price, A. A. Rostami, and Y. B. Pithawalla. Deposition of inhaled electronic vapor products in the respiratory tract. J. Aerosol Sci. 126:7–20, 2018.

    Article  CAS  Google Scholar 

  4. Broday, D. M., and P. G. Georgopoulos. Growth and deposition of hygroscopic particulate matter in the human lungs. Aerosol Sci. Technol. 34:144–159, 2001.

    Article  CAS  Google Scholar 

  5. Burch, G. E. Rate of water and heat loss from the respiratory tract of normal subjects in a subtropical climate. Archs Int. Med. 76:15–327, 1945.

    Article  Google Scholar 

  6. Chen, W., P. Wang, K. Ito, J. Fowles, D. Shusterman, P. Jaques, and K. Kumagai. Measurement of heating coil temperature for e-cigarettes with a “top-coil” clearomizer. PLoS ONE. 13(4):e0195925, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cheng, K. H., Y. S. Cheng, H. C. Yeh, and D. L. Swift. Measurements of airway dimensions and calculation of mass transfer characteristics of the human oral passage. J. Biomed. Eng. 119:475–482, 1997.

    Google Scholar 

  8. Cheng, Y. S., Y. Zhou, and B. T. Chen. Particle deposition in a cast of human oral airways. Aerosol Sci. Technol. 31:286–300, 1999.

    Article  CAS  Google Scholar 

  9. Choi, J., M. H. Tawhai, E. A. Hoffman, and C.-L. Lin. On intra- and intersubject variabilities of airflow in the human lungs. Phys. Fluids (1994-present). 21:101901, 2009.

    Article  Google Scholar 

  10. Cole, P. Some aspects of temperature, moisture and heat relationships in the upper respiratory tract. J. Laryngol. Otol. 67:449–456, 1953.

    Article  CAS  PubMed  Google Scholar 

  11. Cole, P. Further observations on conditioning of respiratory air. J. Laryngol. Otol. 67:669–681, 1953.

    Article  CAS  PubMed  Google Scholar 

  12. Cramer, I. I. Heat and moisture exchange of respiratory mucous membrane. Ann. Otol. Rhinol. Lar. 66:327–343, 1957.

    Article  CAS  Google Scholar 

  13. Daviskas, E., I. Gonda, and S. D. Anderson. Mathematical modeling of heat and water transport in human respiratory tract. J. Appl. Physiol. 69(1):362–372, 1990.

    Article  CAS  PubMed  Google Scholar 

  14. Dery, R., J. Pelletier, A. Jacques, M. Clavet, and J. J. Houde. Humidity in anaesthesiology III. Heat and moisture patterns in the respiratory tract during anaesthesia with the Semi-closed System. Canad. Anaesth. Soc. J. 14:287–298, 1967.

    Article  CAS  PubMed  Google Scholar 

  15. Engineering ToolBox. Dry air properties, 2005. https://www.engineeringtoolbox.com/dry-air-properties-d_973.html.

  16. Ermala, P., and L. R. Holsti. On the burning temperatures of tobacco. Cancer Res. 16(6):490–495, 1956.

  17. Ferron, G. A., B. Haider, and W. G. Kreyling. Method for the approximation of the relative humidity in the upper human airways. Bull. Math. Biol. 47:565–589, 1985.

    Article  CAS  PubMed  Google Scholar 

  18. Ferron, G. A., B. Haider, and W. G. Kreyling. Inhalation of salt aerosol particles – I. Estimation of the temperature and relative humidity of the air in the human upper airways. J. Aerosol Sci. 19:343–363, 1988.

    Article  Google Scholar 

  19. Ferrus, L., H. Guenard, G. Vardon, and P. Varene. Respiratory water loss. Respir. Physiol. 39:367–438, 1980.

    Article  CAS  PubMed  Google Scholar 

  20. Hanna, L. M., and P. W. Scherer. A theoretical model of localized heat and water vapor transport in the human respiratory tract. J. Biomech. Eng. 108:19–27, 1986.

    Article  CAS  PubMed  Google Scholar 

  21. Haut, B., A. Nonclercq, A. Buess, J. Rabineau, C. Rigaut, and B. Sobac. Comprehensive analysis of heat and water exchanges in the human lungs. Front. Physiol. 12:649497, 2021. https://doi.org/10.3389/fphys.2021.649497.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ingebrethsen, B. J., S. K. Cole, and S. L. Alderman. Electronic cigarette aerosol particle size distribution measurements. Inhal. Toxicol. 24(14):976–984, 2012. https://doi.org/10.3109/08958378.2012.744781.

    Article  CAS  PubMed  Google Scholar 

  23. Ingelstedt, S. Studies on the conditioning of air in the respiratory tract. Acta Otolaryngol. Suppl. 131:1–80, 1956.

    CAS  PubMed  Google Scholar 

  24. Ingenito, E. P., J. Solway, E. R. Mcfadden, B. M. Pichurko, E. G. Cravalho, and J. M. Drazen. Finite difference analysis of respiratory heat transfer. J. Appl. Physiol. 61:2252–2259, 1986.

    Article  CAS  PubMed  Google Scholar 

  25. McAdam, K., A. Warrington, A. Hughes, D. Adams, J. Margham, C. Vas, P. Davis, S. Costigan, and C. Proctor. Use of social media to establish vapers puffing behaviour: findings and implications for laboratory evaluation of e-cigarette emissions. Regul. Toxicol. Pharmacol. 107:104423, 2019.

    Article  PubMed  Google Scholar 

  26. McFadden, E. R., B. M. Pichurko, F. Bowman, E. Ingenito, S. Burns, N. Dowling, and A. J. Solway. Thermal mapping of the airways in humans. J. Appl. Physiol. 58:564–570, 1985.

    Article  PubMed  Google Scholar 

  27. McGrath, C., N. Warren, P. Biggs, and J. McAughey. Real-time measurement of inhaled and exhaled cigarette smoke: implications for dose. J. Phys. 2009. https://doi.org/10.1088/1742-6596/151/1/01.

    Article  Google Scholar 

  28. Perwitzschky, R. Die Temperatur und Feuchtigkeitsverhaltnisse der Atemluft in den Luftwegen. Arch. Ohrenheil. 117:l-36, 1928

  29. Proctor, D. F., I. Andersen, and G. R. Lundqvist. Clearance of inhaled particles from the nose. Arch. Int. Med. 131:132–139, 1973.

    Article  CAS  Google Scholar 

  30. Raabe, O. G., H. C. Yeh, G. M. Schum, and R. F. Phalen. Tracheobronchial Geometry: Human, Dog, Rat, Hamster; Report LF-53. Albuquerque, New Mexico: Lovelace Foundation, 1976.

    Google Scholar 

  31. Rowell, T. R., and R. Tarran. Will chronic e-cigarette use cause lung disease? Am J. Physiol. Lung Cell Mol Physiol. 309:1398–1409, 2015.

    Article  Google Scholar 

  32. Soulet, S., M. Duquesne, J. Toutain, C. Pairaud, and M. Mercury. Impact of vaping regimens on electronic cigarette efficiency. Int. J. Environ. Res. Public Health. 16:4753, 2019. https://doi.org/10.3390/ijerph16234753.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tsu, M. E., A. L. Babb, D. D. Ralph, and M. P. Hlastala. Dynamics of heat, water, and soluble gas exchange in the human airways: I. A model study. Ann. Biomed. Eng. 16:547–571, 1988.

    Article  CAS  PubMed  Google Scholar 

  34. Verzar, F., J. Keith, and V. Parchet. Temperature and air humidity in the respiratory tract. Pflugers Arch Gesamte Physiol Menschen Tiere. 257(5):400–416, 1953.

    CAS  PubMed  Google Scholar 

  35. Webb, P. Air temperatures in respiratory tracts of resting subjects in cold. J. Appl. Physiol. 4:378–382, 1951.

    Article  CAS  PubMed  Google Scholar 

  36. Wu, D., M. H. Tawhai, E. A. Hoffman, and C.-L. Lin. A numerical study of heat and water vapor transfer in MDCT-based human airway models. Ann. Biomed. Eng. 42(10):2117–2131, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yeh, H. C., G. M. Schum, and M. T. Dugan. Anatomical models of the tracheobronchial and pulmonary regions of the rat. Anat. Rec. 195:483–492, 1979.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Food and Drug Administration. Research reported in this publication was supported by Food and Drug Administration (FDA) Center for Tobacco Products (CTP). We would like to thank Scott Wasdo, Cissy Li, Anwar Husain, and Kamau Peters for their review and helpful comments during the preparation of the manuscript.

Funding

Funding was provided by Center for Tobacco Products (Grant No. HHSF223201610113C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahman Asgharian.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 189 kb).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgharian, B., Price, O., Creel, A. et al. Simulation Modeling of Air and Droplet Temperatures in the Human Respiratory Tract for Inhaled Tobacco Products. Ann Biomed Eng 51, 741–750 (2023). https://doi.org/10.1007/s10439-022-03082-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03082-0

Keywords

Navigation