Skip to main content
Log in

Analysis of Upper Airway Flow Dynamics in Robin Sequence Infants Using 4-D Computed Tomography and Computational Fluid Dynamics

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Robin Sequence (RS) is a potentially fatal craniofacial condition characterized by undersized jaw, posteriorly displaced tongue, and resultant upper airway obstruction (UAO). Accurate assessment of UAO severity is crucial for management and diagnosis of RS, yet current evaluation modalities have significant limitations and no quantitative measures of airway resistance exist. In this study, we combine 4-dimensional computed tomography and computational fluid dynamics (CFD) to assess, for the first time, UAO severity using fluid dynamic metrics in RS patients. Dramatic intrapopulation differences are found, with the ratio between most and least severe patients in breathing resistance, energy loss, and peak velocity equal to 40:1, 20:1, and 6:1, respectively. Analysis of local airflow dynamics characterized patients as presenting with primary obstructions either at the location of the tongue base, or at the larynx, with tongue base obstructions resulting in a more energetic stenotic jet and greater breathing resistance. Finally, CFD-derived flow metrics are found to correlate with the level of clinical respiratory support. Our results highlight the large intrapopulation variability, both in quantitative metrics of UAO severity (resistance, energy loss, velocity) and in the location and intensity of stenotic jets for RS patients. These results suggest that computed airflow metrics may significantly improve our understanding of UAO and its management in RS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Barker, A. J., P. van Ooij, K. Bandi, J. Garcia, M. Albaghdadi, P. McCarthy, R. O. Bonow, J. Carr, J. Collins, S. C. Malaisrie, and M. Markl. Viscous energy loss in the presence of abnormal aortic flow: energy loss in the presence of abnormal aortic flow. Magn. Reson. Med. 72:620–628, 2014.

    Article  Google Scholar 

  2. Bates, A. J., A. Comerford, R. Cetto, R. C. Schroter, N. S. Tolley, and D. J. Doorly. Power loss mechanisms in pathological tracheas. J. Biomech. 49:2187–2192, 2016.

    Article  CAS  Google Scholar 

  3. Bates, A. J., A. Schuh, G. Amine-Eddine, K. McConnell, W. Loew, R. J. Fleck, J. C. Woods, C. L. Dumoulin, and R. S. Amin. Assessing the relationship between movement and airflow in the upper airway using computational fluid dynamics with motion determined from magnetic resonance imaging. Clin. Biomech. 66:88–96, 2019.

    Article  Google Scholar 

  4. Brouns, M., S. T. Jayaraju, C. Lacor, J. De Mey, M. Noppen, W. Vincken, and S. Verbanck. Tracheal stenosis: a flow dynamics study. J. Appl. Physiol. 102:1178–1184, 2007.

    Article  Google Scholar 

  5. Chakkarapani, A. A., R. Adappa, S. K. Mohammad Ali, S. Gupta, N. B. Soni, L. Chicoine, and H. D. Hummler. Current concepts of mechanical ventilation in neonates—Part 1: Basics. Int. J. Pediatrics Adolesc. Med. 7:15–20, 2020.

    Article  Google Scholar 

  6. Costa, M. A., M. M. Tu, K. P. Murage, S. S. Tholpady, W. A. Engle, and R. L. Flores. Robin sequence: mortality, causes of death, and clinical outcomes. Plast. Reconstruct. Surg. 134:738–745, 2014.

    Article  CAS  Google Scholar 

  7. Donati, F., C. A. Figueroa, N. P. Smith, P. Lamata, and D. A. Nordsletten. Non-invasive pressure difference estimation from PC-MRI using the work-energy equation. Med. Image Anal. 26:159–172, 2015.

    Article  Google Scholar 

  8. Evans, K. N., K. C. Sie, R. A. Hopper, R. P. Glass, A. V. Hing, and M. L. Cunningham. Robin sequence: from diagnosis to development of an effective management plan. Pediatrics. 127:936–948, 2011.

    Article  Google Scholar 

  9. Faizal, W. M., N. N. N. Ghazali, C. Y. Khor, I. A. Badruddin, M. Z. Zainon, A. A. Yazid, N. B. Ibrahim, and R. M. Razi. Computational fluid dynamics modelling of human upper airway: a review. Comput. Methods Prog. Biomed. 196:105627, 2020.

    Article  CAS  Google Scholar 

  10. Fayoux, P., S. J. Daniel, G. Allen, K. Balakrishnan, A. Boudewyns, A. Cheng, A. De Alarcon, D. Goel, C. K. Hart, N. Leboulanger, G. Lee, E. Moreddu, H. Muntz, R. Rahbar, R. Nicollas, C. R. Rogers-Vizena, J. Russell, M. J. Rutter, R. J. H. Smith, M. Wyatt, G. Zalzal, and C. M. Resnick. International Pediatric ORL Group (IPOG) Robin Sequence consensus recommendations. Int. J. Pediatric Otorhinolaryngol. 130:109855, 2020.

    Article  Google Scholar 

  11. Green, A. S. Modelling of peak-flow wall shear stress in major airways of the lung. J. Biomech. 37:661–667, 2004.

    Article  CAS  Google Scholar 

  12. Lam, A. S., M. D. Bindschadler, K. N. Evans, S. D. Friedman, M. S. Blessing, R. Bly, M. L. Cunningham, M. A. Egbert, R. E. Ettinger, E. R. Gallagher, R. A. Hopper, K. Johnson, J. A. Perkins, E. K. Romberg, K. C. Y. Sie, S. M. Susarla, C. J. Zdanski, X. Wang, J. P. Otjen, F. A. Perez, and J. P. Dahl. Accuracy and reliability of 4D-CT and flexible laryngoscopy in upper airway evaluation in robin sequence. Otolaryngol Head Neck Surg. 2021. https://doi.org/10.1177/01945998211027353.

    Article  Google Scholar 

  13. Lam, A. S., M. D. Bindschadler, K. N. Evans, S. D. Friedman, J. P. Otjen, C. J. Zdanski, F. A. Perez, and J. P. Dahl. 4D computed tomography for dynamic upper airway evaluation in robin sequence. Otolaryngol Head Neck Surg. 165:905–908, 2021.

    Article  Google Scholar 

  14. Lee, J. J., M. D. Ford, A. B. Tobey, and N. Jabbour. Diagnosing tongue base obstruction in pierre robin sequence infants: sleep vs awake endoscopy. Cleft Palate-Craniofacial J. 55:692–696, 2018.

    Article  Google Scholar 

  15. Lee, V. S., K. N. Evans, F. A. Perez, A. P. Oron, and J. A. Perkins. Upper airway computed tomography measures and receipt of tracheotomy in infants with robin sequence. JAMA Otolaryngol Head Neck Surg. 142:750, 2016.

    Article  Google Scholar 

  16. Lin, E. L., J. M. Bock, C. J. Zdanski, J. S. Kimbell, and G. J. M. Garcia. Relationship between degree of obstruction and airflow limitation in subglottic stenosis: CFD Study of Subglottic Stenosis. Laryngoscope. 128:1551–1557, 2018.

    Article  Google Scholar 

  17. Mason, E. C., Z. Wu, S. McGhee, J. Markley, M. Koenigs, A. Onwuka, T. Chiang, and K. Zhao. Computational fluid dynamic modeling reveals nonlinear airway stress during trachea development. J. Pediatrics. 238:324-328.e1, 2021.

    Article  Google Scholar 

  18. Mhlaba, J. M., M. L. Chen, H. P. Bandla, F. M. Baroody, and R. R. Reid. Predictive soft tissue airway volume analysis in mandibular distraction: pushing the envelope in surgical planning for obstructive sleep apnea. J. Craniofacial Surg. 27:181–184, 2016.

    Article  Google Scholar 

  19. Moghaddam, MGh., G. J. M. Garcia, D. O. Frank-Ito, J. S. Kimbell, and J. S. Rhee. Virtual septoplasty: a method to predict surgical outcomes for patients with nasal airway obstruction. Int. J. CARS. 15:725–735, 2020.

    Article  Google Scholar 

  20. Mylavarapu, G., M. Mihaescu, L. Fuchs, G. Papatziamos, and E. Gutmark. Planning human upper airway surgery using computational fluid dynamics. J. Biomech. 46:1979–1986, 2013.

    Article  Google Scholar 

  21. Pedley, T. J. Pulmonary fluid dynamics. Annu. Rev. Fluid Mech. 9:229–274, 1977.

    Article  CAS  Google Scholar 

  22. Pibarot, P., D. Garcia, and J. G. Dumesnil. Energy loss index in aortic stenosis: from fluid mechanics concept to clinical application. Circulation. 127:1101–1104, 2013.

    Article  Google Scholar 

  23. Rhee, J. S. Role of virtual surgery in preoperative planning: assessing the individual components of functional nasal airway surgery. Arch. Facial Plast. Surg. 14:354, 2012.

    Article  Google Scholar 

  24. Rios, G., R. J. Morrison, Y. Song, S. J. Fernando, C. Wootten, A. Gelbard, and H. Luo. Computational fluid dynamics analysis of surgical approaches to bilateral vocal fold immobility. Laryngoscope. 130:E57–E64, 2020.

    Article  Google Scholar 

  25. Schwab, R. J., W. B. Gefter, E. A. Hoffman, K. B. Gupta, and A. I. Pack. Dynamic upper airway imaging during awake respiration in normal subjects and patients with sleep disordered breathing. Am. Rev. Respir. Dis. 148:1385–1400, 1993.

    Article  CAS  Google Scholar 

  26. Sul, B., Z. Oppito, S. Jayasekera, B. Vanger, A. Zeller, M. Morris, K. Ruppert, T. Altes, V. Rakesh, S. Day, R. Robinson, J. Reifman, and A. Wallqvist. Assessing airflow sensitivity to healthy and diseased lung conditions in a computational fluid dynamics model validated in vitro. J. Biomech. Eng. 140:051009, 2018.

    Article  Google Scholar 

  27. White, F. M. Fluid Mechanics. New York: McGraw-Hill, p. 862, 2009.

    Google Scholar 

  28. Wootton, D. M., H. Luo, S. C. Persak, S. Sin, J. M. McDonough, C. R. Isasi, and R. Arens. Computational fluid dynamics endpoints to characterize obstructive sleep apnea syndrome in children. J. Appl. Physiol. 116:104–112, 2014.

    Article  Google Scholar 

  29. Xiao, Q., R. Cetto, D. J. Doorly, A. J. Bates, J. N. Rose, C. McIntyre, A. Comerford, G. Madani, N. S. Tolley, and R. Schroter. Assessing changes in airflow and energy loss in a progressive tracheal compression before and after surgical correction. Ann. Biomed. Eng. 48:822–833, 2020.

    Article  Google Scholar 

  30. Xu, C., S. Sin, J. M. McDonough, J. K. Udupa, A. Guez, R. Arens, and D. M. Wootton. Computational fluid dynamics modeling of the upper airway of children with obstructive sleep apnea syndrome in steady flow. J. Biomech. 39:2043–2054, 2006.

    Article  Google Scholar 

  31. Xu, X., J. Wu, W. Weng, and M. Fu. Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations. Biomech. Model Mechanobiol. 19:1679–1695, 2020.

    Article  Google Scholar 

  32. Zhu, L., X. Gong, J. Liu, Y. Li, Y. Zhong, J. Shen, and Z. Xu. Computational evaluation of surgical design for multisegmental complex congenital tracheal stenosis. BioMed Res. Int. 1–10:2020, 2020.

    Google Scholar 

Download references

Acknowledgments

This research was supported by a National Institute of Health T-32 training Grant (NIH 5T32DC000018-38).

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Barbour.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 2278 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbour, M., Richardson, C., Bindschadler, M. et al. Analysis of Upper Airway Flow Dynamics in Robin Sequence Infants Using 4-D Computed Tomography and Computational Fluid Dynamics. Ann Biomed Eng 51, 363–376 (2023). https://doi.org/10.1007/s10439-022-03036-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03036-6

Keywords

Navigation