Abstract
Understanding the loads and stresses on different tissues within the shoulder complex is crucial for preventing joint injury and developing shoulder implants. Finite element (FE) models of the shoulder joint can be helpful in describing these forces and the biomechanics of the joint. Currently, there are no validated FE models of the intact shoulder available in the public domain. This study aimed to develop and validate a shoulder FE model, then make the model available to the orthopaedic research community. Publicly available medical images of the Visible Human Project male subject’s right shoulder were used to generate the model geometry. Material properties from the literature were applied to the different tissues. The model simulated abduction in the scapular plane. Simulated glenohumeral (GH) contact force was compared to in vivo data from the literature, then further compared to other in vitro experimental studies. Output variable results were within one standard deviation of the mean in vivo experimental values of the GH contact force in 0°, 10°, 20°, 30°, and 45° of abduction. Furthermore, a comparison among different analysis precision in the Abaqus/Explicit platform was made. The complete shoulder model is available for download at github.com/OSEL-DAM/ShoulderFiniteElementModel.
This is a preview of subscription content, access via your institution.





References
Ackerman, M. J. The visible human project. Proc. IEEE. 52(Pt 2):1030–1032, 1998
Bergmann, G., F. Graichen, A. Bender, M. Kaab, A. Rohlmann, and P. Westerhoff. In vivo glenohumeral contact forces–measurements in the first patient 7 months postoperatively. J. Biomech. 40:2139–2149, 2007
Bergmann, G., F. Graichen, A. Bender, A. Rohlmann, A. Halder, A. Beier, and P. Westerhoff. In vivo gleno-humeral joint loads during forward flexion and abduction. J. Biomech. 44:1543–1552, 2011
Buchler, P., N. A. Ramaniraka, L. R. Rakotomanana, J. P. Iannotti, and A. Farron. A finite element model of the shoulder: application to the comparison of normal and osteoarthritic joints. Clinical Biomechanics. 17:630–639, 2002
Cignoni, P., M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli and G. Ranzuglia. Meshlab: an open-source mesh processing tool. In: Eurographics Italian chapter conference Salerno, Italy, 2008, p. 129–136.
Clavert, P., M. Zerah, J. Krier, P. Mille, J. F. Kempf, and J. L. Kahn. Finite element analysis of the strain distribution in the humeral head tubercles during abduction: comparison of young and osteoporotic bone. Surg Radiol Anat. 28:581–587, 2006
Couteau, B., P. Mansat, E. Estivalezes, R. Darmana, M. Mansat, and J. Egan. Finite element analysis of the mechanical behavior of a scapula implanted with a glenoid prosthesis. Cli.n Biomech. (Bristol, Avon). 16:566–575, 2001
Culham, E., and M. Peat. Functional anatomy of the shoulder complex. J. Orthop. Sports Phys. Ther. 18:342–350, 1993
Curtis, A. S., K. M. Burbank, J. J. Tierney, A. D. Scheller, and A. R. Curran. The insertional footprint of the rotator cuff: an anatomic study. Arthroscopy. 22:609, 2006
Debski, R. E., J. A. Weiss, W. J. Newman, S. M. Moore, and P. J. McMahon. Stress and strain in the anterior band of the inferior glenohumeral ligament during a simulated clinical examination. J. Shoulder Elbow. Surg. 14:24S-31S, 2005
Delgado, P., S. Alekhya, A. Majidirad, N. A. Hakansson, J. Desai, and Y. Yihun. Shoulder kinematics assessment towards exoskeleton development. Appl. Sci. 10:6336, 2020
Drury, N. J., B. J. Ellis, J. A. Weiss, P. J. McMahon, and R. E. Debski. Finding consistent strain distributions in the glenohumeral capsule between two subjects: implications for development of physical examinations. J. Biomech. 44:607–613, 2011
Drury, N. J., B. J. Ellis, J. A. Weiss, P. J. McMahon, and R. E. Debski. The impact of glenoid labrum thickness and modulus on labrum and glenohumeral capsule function. J. Biomech. Eng.132:121003, 2010
Ellis, B. J., R. E. Debski, S. M. Moore, P. J. McMahon, and J. A. Weiss. Methodology and sensitivity studies for finite element modeling of the inferior glenohumeral ligament complex. J. Biomech. 40:603–612, 2007
Ellis, B. J., N. J. Drury, S. M. Moore, P. J. McMahon, J. A. Weiss, and R. E. Debski. Finite element modelling of the glenohumeral capsule can help assess the tested region during a clinical exam. Comput. Methods Biomech. Biomed. Eng. 13:413–418, 2010
Favre, P., P. Kloen, D. L. Helfet, and C. M. Werner. Superior versus anteroinferior plating of the clavicle: a finite element study. J Orthop Trauma. 25:661–665, 2011
Favre, P., M. Senteler, J. Hipp, S. Scherrer, C. Gerber, and J. G. Snedeker. An integrated model of active glenohumeral stability. J. Biomech. 45:2248–2255, 2012
Fox, J. A., B. J. Cole, A. A. Romeo, A. K. Meininger, J. M. Williams, R. E. Glenn Jr., J. Bicos, J. K. Hayden, and C. B. Dorow. Articular cartilage thickness of the humeral head: an anatomic study. Orthopedics. 31:216, 2008
Gatti, C. J., J. D. Maratt, M. L. Palmer, R. E. Hughes, and J. E. Carpenter. Development and validation of a finite element model of the superior glenoid labrum. Ann. Biomed. Eng. 38:3766–3776, 2010
Huang, C.-Y., A. Stankiewicz, G. A. Ateshian, and V. C. Mow. Anisotropy, inhomogeneity, and tension–compression nonlinearity of human glenohumeral cartilage in finite deformation. J. Biomech. 38:799–809, 2005
Hwang, E., J. E. Carpenter, R. E. Hughes, and M. L. Palmer. Effects of biceps tension and superior humeral head translation on the glenoid labrum. J. Orthop. Res. 32:1424–1429, 2014
Idkaidek, A., and I. Jasiuk. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software. J. Robot. Surgery. 9:299–310, 2015
Iwamoto, M., K. Miki, and K. H. Yang. Development of a finite element model of the human shoulder to investigate the mechanical responses and injuries in side impact. JSME Int. J. Ser. C. 44:1072–1081, 2001
Jang, S. W., Y. S. Yoo, H. Y. Lee, Y. S. Kim, P. K. Srivastava, and A. V. Nair. Stress distribution in superior labral complex and rotator cuff during in vivo shoulder motion: a finite element analysis. Arthroscopy. 31:2073–2081, 2015
Kiapour, A., A. M. Kiapour, V. Kaul, C. E. Quatman, S. C. Wordeman, T. E. Hewett, C. K. Demetropoulos, and V. K. Goel. Finite element model of the knee for investigation of injury mechanisms: development and validation. J. Biomech. Eng.136:011002, 2014
Klemt, C., D. Nolte, G. Grigoriadis, E. Di Federico, P. Reilly, and A. M. J. Bull. The contribution of the glenoid labrum to glenohumeral stability under physiological joint loading using finite element analysis. Comput. Methods Biomech. Biomed. Eng. 20:1613–1622, 2017
Kronberg, M., L. A. Brostrom, and V. Soderlund. Retroversion of the humeral head in the normal shoulder and its relationship to the normal range of motion. Clin. Orthop. Relat. Res. 15:113–117, 1990
Ludewig, P. M., T. M. Cook, and D. A. Nawoczenski. Three-dimensional scapular orientation and muscle activity at selected positions of humeral elevation. J. Orthop. Sports Phys. Therapy. 24:57–65, 1996
Luo, Z.-P., H.-C. Hsu, J. J. Grabowski, B. F. Morrey, and K.-N. An. Mechanical environment associated with rotator cuff tears. J. Shoulder Elbow Surgery. 7:616–620, 1998
Ohio Supercomputer Center. 1987.
Östh J., M. Mendoza-Vazquez, A. Linder, M. Y. Svensson and K. Brolin. The VIVA OpenHBM finite element 50th percentile female occupant model: whole body model development and kinematic validation. In: IRCOBI Conference2017, p. 173–181.
Poppen, N., and P. Walker. Forces at the glenohumeral joint in abduction. Clin. Orthop. Related Res. 25:165–170, 1978
Sakai, N., Y. Hagihara, T. Furusawa, N. Hosoda, Y. Sawae, and T. Murakami. Analysis of biphasic lubrication of articular cartilage loaded by cylindrical indenter. Tribol. Int. 46:225–236, 2012
Sano, H., I. Wakabayashi, and E. Itoi. Stress distribution in the supraspinatus tendon with partial-thickness tears: an analysis using two-dimensional finite element model. J. Shoulder Elbow Surgery. 15:100–105, 2006
Schleich, C., B. Bittersohl, G. Antoch, R. Krauspe, C. Zilkens, and J. Kircher. Thickness distribution of glenohumeral joint cartilage: a normal value study on asymptomatic volunteers using 3-tesla magnetic resonance tomography. Cartilage. 8:105–111, 2017
Seki, N., E. Itoi, Y. Shibuya, I. Wakabayashi, H. Sano, R. Sashi, H. Minagawa, N. Yamamoto, H. Abe, K. Kikuchi, K. Okada, and Y. Shimada. Mechanical environment of the supraspinatus tendon: three-dimensional finite element model analysis. J. Orthop. Sci. 13:348–353, 2008
Sins, L., P. Tétreault, N. Hagemeister, and N. Nuño. Adaptation of the AnyBody™ musculoskeletal shoulder model to the nonconforming total shoulder arthroplasty context. J. Biomech. Eng. 137:15, 2015
Smith, C. D., S. D. Masouros, A. M. Hill, A. L. Wallace, A. A. Amis, and A. M. J. Bull. The Compressive Behavior of the Human Glenoid Labrum May Explain the Common Patterns of SLAP Lesions. Arthrosc. J. Arthrosc. Relat. Surgery. 25:504–509, 2009
Sung-Woo, K., J. M. Cavanaugh, J. P. Leach, and S. W. Rouhana. Mechanical properties of the shoulder ligaments under dynamic loading. Stapp Car Crash J. 48:125, 2004
Tankaria H., X. J. Jackson, R. Borwankar, G. N. Srichandhru, A. Le Tran, J. Yanamadala, G. M. Noetscher, A. Nazarian, S. Louie and S. N. Makarov. VHP-female full-body human CAD model for cross-platform FEM simulations—Recent development and validations. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)IEEE, 2016, p. 2232–2235.
Terrier, A., A. Vogel, M. Capezzali, and A. Farron. An algorithm to allow humerus translation in the indeterminate problem of shoulder abduction. Med. Eng. Phys. 30:710–716, 2008
Van der Helm, F. C. Analysis of the kinematic and dynamic behavior of the shoulder mechanism. J. Biomech. 27:527–550, 1994
Wakabayashi, I., E. Itoi, H. Sano, Y. Shibuya, R. Sashi, H. Minagawa, and M. Kobayashi. Mechanical environment of the supraspinatus tendon: a two-dimensional finite element model analysis. J. Shoulder Elbow. Surg. 12:612–617, 2003
Westerhoff, P., F. Graichen, A. Bender, A. Halder, A. Beier, A. Rohlmann, and G. Bergmann. In vivo measurement of shoulder joint loads during activities of daily living. J. Biomech. 42:1840–1849, 2009
Westerhoff, P., F. Graichen, A. Bender, A. Halder, A. Beier, A. Rohlmann, and G. Bergmann. In vivo measurement of shoulder joint loads during walking with crutches. Clin. Biomech. 27:711–718, 2012
Westerhoff, P., F. Graichen, A. Bender, A. Halder, A. Beier, A. Rohlmann, and G. Bergmann. Measurement of shoulder joint loads during wheelchair propulsion measured in vivo. Clin. Biomech. 26:982–989, 2011
Wu, G., F. C. Van der Helm, H. D. Veeger, M. Makhsous, P. Van Roy, C. Anglin, J. Nagels, A. R. Karduna, K. McQuade, and X. Wang. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J. Biomech. 38:981–992, 2005
Yanagawa, T., C. J. Goodwin, K. B. Shelburne, J. E. Giphart, M. R. Torry, and M. G. Pandy. Contributions of the individual muscles of the shoulder to glenohumeral joint stability during abduction. J. Biomech. Eng.130:021024, 2008
Yeh, M.-L., D. Lintner, and Z.-P. Luo. Stress distribution in the superior labrum during throwing motion. Am. J. Sports Med. 33:395–401, 2005
Zheng, M. X., Z. H. Qian, Z. M. Zou, C. Peach, M. Akrami, and L. Ren. Subject-specific finite element modelling of the human shoulder complex part 1: model construction and quasi-static abduction simulation. J. Bionic Eng. 17:1224–1238, 2020
Zheng, M. X., Z. H. Qian, Z. M. Zou, C. Peach, and L. Ren. Subject-specific finite element modeling of the human shoulder complex part 2: quantitative evaluation of the effect of rotator cuff tear propagation on glenohumeral joint stability. IEEE Access. 7:34068–34077, 2019
Zheng, M. X., Z. M. Zou, P. J. D. Bartolo, C. Peach, and L. Ren. Finite element models of the human shoulder complex: a review of their clinical implications and modelling techniques. Int. J. Numerical Methods Biomed. Eng.33:e02777, 2017
Acknowledgments
This project was funded by the FDA Critical Path Initiative. Graduate student supplemental funding was provided through a grant from the NSF Non-Academic Research Internships for Graduate Students (INTERN) program for experiential learning through non-academic research internships facilitated through the Center for Disruptive Musculoskeletal Innovations (CDMI). Disclaimer: The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as an actual or implied endorsement of such products by US DHHS.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflicts of interest.
Additional information
Associate Editor Joel Stitzel oversaw the review of this article.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sadeqi, S., Baumann, A.P., Goel, V.K. et al. A Validated Open-Source Shoulder Finite Element Model and Investigation of the Effect of Analysis Precision. Ann Biomed Eng 51, 24–33 (2023). https://doi.org/10.1007/s10439-022-03018-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-022-03018-8