Skip to main content

A Validated Open-Source Shoulder Finite Element Model and Investigation of the Effect of Analysis Precision

Abstract

Understanding the loads and stresses on different tissues within the shoulder complex is crucial for preventing joint injury and developing shoulder implants. Finite element (FE) models of the shoulder joint can be helpful in describing these forces and the biomechanics of the joint. Currently, there are no validated FE models of the intact shoulder available in the public domain. This study aimed to develop and validate a shoulder FE model, then make the model available to the orthopaedic research community. Publicly available medical images of the Visible Human Project male subject’s right shoulder were used to generate the model geometry. Material properties from the literature were applied to the different tissues. The model simulated abduction in the scapular plane. Simulated glenohumeral (GH) contact force was compared to in vivo data from the literature, then further compared to other in vitro experimental studies. Output variable results were within one standard deviation of the mean in vivo experimental values of the GH contact force in 0°, 10°, 20°, 30°, and 45° of abduction. Furthermore, a comparison among different analysis precision in the Abaqus/Explicit platform was made. The complete shoulder model is available for download at github.com/OSEL-DAM/ShoulderFiniteElementModel.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Ackerman, M. J. The visible human project. Proc. IEEE. 52(Pt 2):1030–1032, 1998

    Google Scholar 

  2. Bergmann, G., F. Graichen, A. Bender, M. Kaab, A. Rohlmann, and P. Westerhoff. In vivo glenohumeral contact forces–measurements in the first patient 7 months postoperatively. J. Biomech. 40:2139–2149, 2007

    CAS  Google Scholar 

  3. Bergmann, G., F. Graichen, A. Bender, A. Rohlmann, A. Halder, A. Beier, and P. Westerhoff. In vivo gleno-humeral joint loads during forward flexion and abduction. J. Biomech. 44:1543–1552, 2011

    CAS  Google Scholar 

  4. Buchler, P., N. A. Ramaniraka, L. R. Rakotomanana, J. P. Iannotti, and A. Farron. A finite element model of the shoulder: application to the comparison of normal and osteoarthritic joints. Clinical Biomechanics. 17:630–639, 2002

    CAS  Google Scholar 

  5. Cignoni, P., M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli and G. Ranzuglia. Meshlab: an open-source mesh processing tool. In: Eurographics Italian chapter conference Salerno, Italy, 2008, p. 129–136.

  6. Clavert, P., M. Zerah, J. Krier, P. Mille, J. F. Kempf, and J. L. Kahn. Finite element analysis of the strain distribution in the humeral head tubercles during abduction: comparison of young and osteoporotic bone. Surg Radiol Anat. 28:581–587, 2006

    Google Scholar 

  7. Couteau, B., P. Mansat, E. Estivalezes, R. Darmana, M. Mansat, and J. Egan. Finite element analysis of the mechanical behavior of a scapula implanted with a glenoid prosthesis. Cli.n Biomech. (Bristol, Avon). 16:566–575, 2001

    CAS  Google Scholar 

  8. Culham, E., and M. Peat. Functional anatomy of the shoulder complex. J. Orthop. Sports Phys. Ther. 18:342–350, 1993

    CAS  Google Scholar 

  9. Curtis, A. S., K. M. Burbank, J. J. Tierney, A. D. Scheller, and A. R. Curran. The insertional footprint of the rotator cuff: an anatomic study. Arthroscopy. 22:609, 2006

    Google Scholar 

  10. Debski, R. E., J. A. Weiss, W. J. Newman, S. M. Moore, and P. J. McMahon. Stress and strain in the anterior band of the inferior glenohumeral ligament during a simulated clinical examination. J. Shoulder Elbow. Surg. 14:24S-31S, 2005

    Google Scholar 

  11. Delgado, P., S. Alekhya, A. Majidirad, N. A. Hakansson, J. Desai, and Y. Yihun. Shoulder kinematics assessment towards exoskeleton development. Appl. Sci. 10:6336, 2020

    CAS  Google Scholar 

  12. Drury, N. J., B. J. Ellis, J. A. Weiss, P. J. McMahon, and R. E. Debski. Finding consistent strain distributions in the glenohumeral capsule between two subjects: implications for development of physical examinations. J. Biomech. 44:607–613, 2011

    Google Scholar 

  13. Drury, N. J., B. J. Ellis, J. A. Weiss, P. J. McMahon, and R. E. Debski. The impact of glenoid labrum thickness and modulus on labrum and glenohumeral capsule function. J. Biomech. Eng.132:121003, 2010

    Google Scholar 

  14. Ellis, B. J., R. E. Debski, S. M. Moore, P. J. McMahon, and J. A. Weiss. Methodology and sensitivity studies for finite element modeling of the inferior glenohumeral ligament complex. J. Biomech. 40:603–612, 2007

    Google Scholar 

  15. Ellis, B. J., N. J. Drury, S. M. Moore, P. J. McMahon, J. A. Weiss, and R. E. Debski. Finite element modelling of the glenohumeral capsule can help assess the tested region during a clinical exam. Comput. Methods Biomech. Biomed. Eng. 13:413–418, 2010

    Google Scholar 

  16. Favre, P., P. Kloen, D. L. Helfet, and C. M. Werner. Superior versus anteroinferior plating of the clavicle: a finite element study. J Orthop Trauma. 25:661–665, 2011

    Google Scholar 

  17. Favre, P., M. Senteler, J. Hipp, S. Scherrer, C. Gerber, and J. G. Snedeker. An integrated model of active glenohumeral stability. J. Biomech. 45:2248–2255, 2012

    Google Scholar 

  18. Fox, J. A., B. J. Cole, A. A. Romeo, A. K. Meininger, J. M. Williams, R. E. Glenn Jr., J. Bicos, J. K. Hayden, and C. B. Dorow. Articular cartilage thickness of the humeral head: an anatomic study. Orthopedics. 31:216, 2008

    Google Scholar 

  19. Gatti, C. J., J. D. Maratt, M. L. Palmer, R. E. Hughes, and J. E. Carpenter. Development and validation of a finite element model of the superior glenoid labrum. Ann. Biomed. Eng. 38:3766–3776, 2010

    Google Scholar 

  20. Huang, C.-Y., A. Stankiewicz, G. A. Ateshian, and V. C. Mow. Anisotropy, inhomogeneity, and tension–compression nonlinearity of human glenohumeral cartilage in finite deformation. J. Biomech. 38:799–809, 2005

    Google Scholar 

  21. Hwang, E., J. E. Carpenter, R. E. Hughes, and M. L. Palmer. Effects of biceps tension and superior humeral head translation on the glenoid labrum. J. Orthop. Res. 32:1424–1429, 2014

    Google Scholar 

  22. Idkaidek, A., and I. Jasiuk. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software. J. Robot. Surgery. 9:299–310, 2015

    Google Scholar 

  23. Iwamoto, M., K. Miki, and K. H. Yang. Development of a finite element model of the human shoulder to investigate the mechanical responses and injuries in side impact. JSME Int. J. Ser. C. 44:1072–1081, 2001

    Google Scholar 

  24. Jang, S. W., Y. S. Yoo, H. Y. Lee, Y. S. Kim, P. K. Srivastava, and A. V. Nair. Stress distribution in superior labral complex and rotator cuff during in vivo shoulder motion: a finite element analysis. Arthroscopy. 31:2073–2081, 2015

    Google Scholar 

  25. Kiapour, A., A. M. Kiapour, V. Kaul, C. E. Quatman, S. C. Wordeman, T. E. Hewett, C. K. Demetropoulos, and V. K. Goel. Finite element model of the knee for investigation of injury mechanisms: development and validation. J. Biomech. Eng.136:011002, 2014

    Google Scholar 

  26. Klemt, C., D. Nolte, G. Grigoriadis, E. Di Federico, P. Reilly, and A. M. J. Bull. The contribution of the glenoid labrum to glenohumeral stability under physiological joint loading using finite element analysis. Comput. Methods Biomech. Biomed. Eng. 20:1613–1622, 2017

    Google Scholar 

  27. Kronberg, M., L. A. Brostrom, and V. Soderlund. Retroversion of the humeral head in the normal shoulder and its relationship to the normal range of motion. Clin. Orthop. Relat. Res. 15:113–117, 1990

    Google Scholar 

  28. Ludewig, P. M., T. M. Cook, and D. A. Nawoczenski. Three-dimensional scapular orientation and muscle activity at selected positions of humeral elevation. J. Orthop. Sports Phys. Therapy. 24:57–65, 1996

    CAS  Google Scholar 

  29. Luo, Z.-P., H.-C. Hsu, J. J. Grabowski, B. F. Morrey, and K.-N. An. Mechanical environment associated with rotator cuff tears. J. Shoulder Elbow Surgery. 7:616–620, 1998

    CAS  Google Scholar 

  30. Ohio Supercomputer Center. 1987.

  31. Östh J., M. Mendoza-Vazquez, A. Linder, M. Y. Svensson and K. Brolin. The VIVA OpenHBM finite element 50th percentile female occupant model: whole body model development and kinematic validation. In: IRCOBI Conference2017, p. 173–181.

  32. Poppen, N., and P. Walker. Forces at the glenohumeral joint in abduction. Clin. Orthop. Related Res. 25:165–170, 1978

    Google Scholar 

  33. Sakai, N., Y. Hagihara, T. Furusawa, N. Hosoda, Y. Sawae, and T. Murakami. Analysis of biphasic lubrication of articular cartilage loaded by cylindrical indenter. Tribol. Int. 46:225–236, 2012

    CAS  Google Scholar 

  34. Sano, H., I. Wakabayashi, and E. Itoi. Stress distribution in the supraspinatus tendon with partial-thickness tears: an analysis using two-dimensional finite element model. J. Shoulder Elbow Surgery. 15:100–105, 2006

    Google Scholar 

  35. Schleich, C., B. Bittersohl, G. Antoch, R. Krauspe, C. Zilkens, and J. Kircher. Thickness distribution of glenohumeral joint cartilage: a normal value study on asymptomatic volunteers using 3-tesla magnetic resonance tomography. Cartilage. 8:105–111, 2017

    Google Scholar 

  36. Seki, N., E. Itoi, Y. Shibuya, I. Wakabayashi, H. Sano, R. Sashi, H. Minagawa, N. Yamamoto, H. Abe, K. Kikuchi, K. Okada, and Y. Shimada. Mechanical environment of the supraspinatus tendon: three-dimensional finite element model analysis. J. Orthop. Sci. 13:348–353, 2008

    Google Scholar 

  37. Sins, L., P. Tétreault, N. Hagemeister, and N. Nuño. Adaptation of the AnyBody™ musculoskeletal shoulder model to the nonconforming total shoulder arthroplasty context. J. Biomech. Eng. 137:15, 2015

    Google Scholar 

  38. Smith, C. D., S. D. Masouros, A. M. Hill, A. L. Wallace, A. A. Amis, and A. M. J. Bull. The Compressive Behavior of the Human Glenoid Labrum May Explain the Common Patterns of SLAP Lesions. Arthrosc. J. Arthrosc. Relat. Surgery. 25:504–509, 2009

    Google Scholar 

  39. Sung-Woo, K., J. M. Cavanaugh, J. P. Leach, and S. W. Rouhana. Mechanical properties of the shoulder ligaments under dynamic loading. Stapp Car Crash J. 48:125, 2004

    Google Scholar 

  40. Tankaria H., X. J. Jackson, R. Borwankar, G. N. Srichandhru, A. Le Tran, J. Yanamadala, G. M. Noetscher, A. Nazarian, S. Louie and S. N. Makarov. VHP-female full-body human CAD model for cross-platform FEM simulations—Recent development and validations. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)IEEE, 2016, p. 2232–2235.

  41. Terrier, A., A. Vogel, M. Capezzali, and A. Farron. An algorithm to allow humerus translation in the indeterminate problem of shoulder abduction. Med. Eng. Phys. 30:710–716, 2008

    Google Scholar 

  42. Van der Helm, F. C. Analysis of the kinematic and dynamic behavior of the shoulder mechanism. J. Biomech. 27:527–550, 1994

    Google Scholar 

  43. Wakabayashi, I., E. Itoi, H. Sano, Y. Shibuya, R. Sashi, H. Minagawa, and M. Kobayashi. Mechanical environment of the supraspinatus tendon: a two-dimensional finite element model analysis. J. Shoulder Elbow. Surg. 12:612–617, 2003

    Google Scholar 

  44. Westerhoff, P., F. Graichen, A. Bender, A. Halder, A. Beier, A. Rohlmann, and G. Bergmann. In vivo measurement of shoulder joint loads during activities of daily living. J. Biomech. 42:1840–1849, 2009

    CAS  Google Scholar 

  45. Westerhoff, P., F. Graichen, A. Bender, A. Halder, A. Beier, A. Rohlmann, and G. Bergmann. In vivo measurement of shoulder joint loads during walking with crutches. Clin. Biomech. 27:711–718, 2012

    CAS  Google Scholar 

  46. Westerhoff, P., F. Graichen, A. Bender, A. Halder, A. Beier, A. Rohlmann, and G. Bergmann. Measurement of shoulder joint loads during wheelchair propulsion measured in vivo. Clin. Biomech. 26:982–989, 2011

    CAS  Google Scholar 

  47. Wu, G., F. C. Van der Helm, H. D. Veeger, M. Makhsous, P. Van Roy, C. Anglin, J. Nagels, A. R. Karduna, K. McQuade, and X. Wang. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J. Biomech. 38:981–992, 2005

    CAS  Google Scholar 

  48. Yanagawa, T., C. J. Goodwin, K. B. Shelburne, J. E. Giphart, M. R. Torry, and M. G. Pandy. Contributions of the individual muscles of the shoulder to glenohumeral joint stability during abduction. J. Biomech. Eng.130:021024, 2008

    Google Scholar 

  49. Yeh, M.-L., D. Lintner, and Z.-P. Luo. Stress distribution in the superior labrum during throwing motion. Am. J. Sports Med. 33:395–401, 2005

    Google Scholar 

  50. Zheng, M. X., Z. H. Qian, Z. M. Zou, C. Peach, M. Akrami, and L. Ren. Subject-specific finite element modelling of the human shoulder complex part 1: model construction and quasi-static abduction simulation. J. Bionic Eng. 17:1224–1238, 2020

    Google Scholar 

  51. Zheng, M. X., Z. H. Qian, Z. M. Zou, C. Peach, and L. Ren. Subject-specific finite element modeling of the human shoulder complex part 2: quantitative evaluation of the effect of rotator cuff tear propagation on glenohumeral joint stability. IEEE Access. 7:34068–34077, 2019

    Google Scholar 

  52. Zheng, M. X., Z. M. Zou, P. J. D. Bartolo, C. Peach, and L. Ren. Finite element models of the human shoulder complex: a review of their clinical implications and modelling techniques. Int. J. Numerical Methods Biomed. Eng.33:e02777, 2017

    Google Scholar 

Download references

Acknowledgments

This project was funded by the FDA Critical Path Initiative. Graduate student supplemental funding was provided through a grant from the NSF Non-Academic Research Internships for Graduate Students (INTERN) program for experiential learning through non-academic research internships facilitated through the Center for Disruptive Musculoskeletal Innovations (CDMI). Disclaimer: The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as an actual or implied endorsement of such products by US DHHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Baumann.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeqi, S., Baumann, A.P., Goel, V.K. et al. A Validated Open-Source Shoulder Finite Element Model and Investigation of the Effect of Analysis Precision. Ann Biomed Eng 51, 24–33 (2023). https://doi.org/10.1007/s10439-022-03018-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03018-8

Keywords