Abstract
During future lunar missions, astronauts may be required to pilot vehicles while standing, and the associated kinematic and injury response is not well understood. In this study, we used human body modeling to predict unsuited astronaut kinematics and injury risk for piloted lunar launches and landings in the standing posture. Three pulses (2–5 g; 10–150 ms rise times) were applied in 10 directions (vertical; ± 10-degree offsets) for a total of 30 simulations. Across all simulations, motion envelopes were computed to quantify displacement of the astronaut’s head (max 9.0 cm forward, 7.0 cm backward, 2.1 cm upward, 7.3 cm downward, 2.4 cm lateral) and arms (max 25 cm forward, 35 cm backward, 15 cm upward, 20 cm downward, 20 cm lateral). All head, neck, lumbar, and lower extremity injury metrics were within NASA’s tolerance limits, except tibia compression forces (0–1543 N upper tibia; 0–1482 N lower tibia; tolerance—1350 N) and revised tibia index (0.04–0.58 upper tibia; 0.03–0.48 lower tibia; tolerance—0.43) for the 2.7 g/150 ms pulse. Pulse magnitude and duration contributed over 80% to the injury metric values, whereas loading direction contributed less than 3%. Overall, these simulations suggest piloting a lunar lander vehicle in the standing posture presents a tibia injury risk which is potentially outside NASA’s acceptance limits and warrants further investigation.
Similar content being viewed by others
Abbreviations
- 2.7 g/150 ms:
-
Half-sinusoidal pulse with 2.7 g (26.5 m/s2) peak acceleration and 150 ms rise time
- 2 g/50 ms:
-
Half-sinusoidal pulse with 2 g (19.6 m/s2) peak acceleration and 50 ms rise time
- 5 g/10 ms:
-
Half-sinusoidal pulse with 5 g (49 m/s2) peak acceleration and 10 ms rise time
- ACL:
-
Anterior cruciate ligament
- AIS:
-
Abbreviated injury scale
- Ant-post:
-
Anterior-posterior
- ATD:
-
Anthropomorphic test device
- BrIC:
-
Brain injury criterion
- CG:
-
Center of gravity
- FE:
-
Finite element
- GHBMC:
-
Global human body models consortium
- HBM:
-
Human body model
- HIC:
-
Head injury criterion
- IARV:
-
Injury assessment reference value
- LCL:
-
Lateral collateral ligament
- M50-PS:
-
GHBMC average-male simplified pedestrian model
- MCL:
-
Medial collateral ligament
- NASA:
-
National Aeronautics and Space Administration
- N ij :
-
Neck injury criterion
- PCL:
-
Posterior cruciate ligament
- PMHS:
-
Post-mortem human subject
- RTI:
-
Revised Tibia index
References
Bruneau, D. A., and D. S. Cronin. Brain response of a computational head model for prescribed skull kinematics and simulated football helmet impact boundary conditions. J. Mech. Behav. Biomed. Mater. 115:104299, 2021.
Caldwell, E., M. Gernhardt, J. T. Somers, D. Younker, and N. Newby. Evidence Report: Risk of Injury Due to Dynamic Loads. National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, Texas, 2012.
Costa, C., J. Aira, B. Koya, W. Decker, J. Sink, S. Withers, R. Beal, S. Schieffer, S. Gayzik, J. Stitzel, and A. Weaver. Finite element reconstruction of a vehicle-to-pedestrian impact. Traffic Inj. Prev. 21:S145–S147, 2020.
Decker, W. B., D. A. Jones, K. Devane, M. L. Davis, J. P. Patalak, and F. S. Gayzik. Simulation-based assessment of injury risk for an average male motorsport driver. Traffic Inj. Prev. 2020. https://doi.org/10.1080/15389588.2020.1802021.
Elemance LLC. Global human body models consortium user manual: simplified pedestrians versions 1.5.2, 1.6.2, 2.4.2 for LS-DYNA. 2019.
Funk, J. R., J. M. Cormier, C. E. Bain, H. Guzman, E. Bonugli, and S. J. Manoogian. Head and neck loading in everyday and vigorous activities. Ann. Biomed. Eng. 39:766–776, 2011.
Gaewsky, J. P., D. A. Jones, X. Ye, B. Koya, K. P. McNamara, F. S. Gayzik, A. A. Weaver, J. B. Putnam, J. T. Somers, and J. D. Stitzel. Modeling human volunteers in multidirectional, uni-axial sled tests using a finite element human body model. Ann. Biomed. Eng. 47:487–511, 2019.
Gayzik, F. S., D. P. Moreno, C. P. Geer, S. D. Wuertzer, R. S. Martin, and J. D. Stitzel. Development of a full body CAD dataset for computational modeling: a multi-modality approach. Ann. Biomed. Eng. 39:2568–2583, 2011.
Hostetler, Z. S., J. Aira, J. D. Stitzel, and F. S. Gayzik. A computational study of the biomechanical response of the human lower extremity subjected to high rate vertical accelerative loading. IRCOBI Annual Meeting Proceedings, pp. 662–673, 2019.
Institute of Medicine. Review of NASA’s evidence reports on human health risks: 2013 letter report. Washington, D.C.: National Academies Press, 2014. https://doi.org/10.17226/18575
Jones, D. A., J. P. Gaewsky, J. T. Somers, F. S. Gayzik, A. A. Weaver, and J. D. Stitzel. Head injury metric response in finite element ATDs and a human body model in multidirectional loading regimes. Traffic Inj. Prev. 20:S96–S102, 2019.
Kerrigan, J. R., B. J. Ivarsson, D. Bose, N. J. Madeley, S. A. Millington, K. S. Bhalla, and J. R. Crandall. Rate-sensitive constitutive and failure properties of human collateral knee ligaments. Proceedings of the 2003 IRCOBI conference, pp. 177–190, 2003. http://www.ircobi.org/wordpress/downloads/irc0111/2003/Session3/3.4.pdf
Kuppa, S., J. Wang, M. Haffner, and R. Eppinger. Lower extremity injuries and associated injury criteria (2001-06-0160). SAE Tech. Pap., 2001. https://www.sae.org/publications/technical-papers/content/2001-06-0160/
Mertz, H. J. Injury risk assessments based on dummy responses. In: Accidental Injury, edited by A. M. Nahum, and J. W. Melvin. New York: Springer, 2002, pp. 89–102. https://doi.org/10.1007/978-0-387-21787-1_5.
National Academies of Sciences, Engineering, and Medicine. Review of NASA’s evidence reports on human health risks: 2015 letter report. Washington, D.C.: National Academies Press, 2016, pp. 1–82, https://doi.org/10.17226/21844
National Aeronautics and Space Administration. NASA’s lunar exploration program overview, 2020. https://www.nasa.gov/sites/default/files/atoms/files/artemis_plan-20200921.pdf
National Aeronautics and Space Administration. HRR - Gap - OP-101. , 2021. https://humanresearchroadmap.nasa.gov/Gaps/gap.aspx?i=740#
National Aeronautics and Space Administration. HRR - Gap - OP-201. , 2021. https://humanresearchroadmap.nasa.gov/Gaps/gap.aspx?i=741
National Aeronautics and Space Administration. HRR - Gap - OP-301. , 2021. https://humanresearchroadmap.nasa.gov/gaps/gap.aspx?i=742
National Highway Traffic Safety Administration. Final economic assessment, FMVSS No. 201, upper interior head protection. Office of Regulatory Analysis, Plans and Policy. Washingt. DC, 1995.
Noyes, F. R., D. L. Butler, E. S. Grood, R. F. Zernicke, and M. S. Hefzy. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J. Bone Joint Surg. Am. 66:344–352, 1984.
Parr, J. C., M. E. Miller, J. A. Pellettiere, and R. A. Erich. Neck injury criteria formulation and injury risk curves for the ejection environment: A pilot study. Aviat. Space. Environ. Med. 84:1240–1248, 2013.
Patrick, L. M., and C. C. Chou. Response of the human neck in flexion, extension and lateral flexion, 1976. https://trid.trb.org/view/61565
Pellman, E. J., D. C. Viano, A. M. Tucker, I. R. Casson, and J. F. Waeckerle. Concussion in professional football: reconstruction of game impacts and injuries. Neurosurgery 53:799–812, 2003. (discussion 812-4)
Pintar, F., P. Ivancic, M. Kleinberger, and J. Rupp. Occupant protection risk SRP research plan review. National Aeronautics and Space Administration, Jhonson Space Center, Houston, Texas, 2015. https://humanresearchroadmap.nasa.gov/reviews/
Prietto, M. P., J. R. Bain, S. N. Stonebrook, and R. A. Settlage. Tensile strength of the human posterior cruciate ligament (PCL). Trans. Orthop. Res. Soc. 13:736–745, 1988.
Ramachandra, R., V. Pradhan, Y. S. Kang, R. Davidson, M. Humer, and J. Zhang. Effect of seat back restriction on head, neck and torso responses of front seat occupants when subjected to a moderate speed rear-impact, SAE Tech. Pap. 2021-01-0920, 2021. https://doi.org/10.4271/2021-01-0920
Rohlmann, A., D. Pohl, A. Bender, F. Graichen, J. Dymke, H. Schmidt, and G. Bergmann. Activities of everyday life with high spinal loads. PLoS ONE. 9:e98510, 2014.
Rowson, S., and S. M. Duma. Brain injury prediction: assessing the combined probability of concussion using linear and rotational head acceleration. Ann. Biomed. Eng. 41:873–882, 2013.
Somasundaram, K., L. Zhang, D. Sherman, P. Begeman, D. Lyu, and J. M. Cavanaugh. Evaluating thoracolumbar spine response during simulated underbody blast impact using a total human body finite element model. J. Mech. Behav. Biomed. Mater. 100:103398, 2019.
Somers, J. T., D. Gohmert, and J. W. Brinkley. Application of the Brinkley dynamic response criterion to spacecraft transient dynamic events. NASA Tech. Memo. NASA/TM-2013-217380-REV1, 2017. http://ston.jsc.nasa.gov/collections/trs/_techrep/TM-2013-217380.pdf
Somers, J. T., T. Reiber, J. Pattarini, N. Newby, and P. Greenhalgh. Lunar transient accelerations white paper. NASA Tech. Memo. NASA/TM-20205008198 , 2020. https://ntrs.nasa.gov/citations/20205008198
Stubbs, T. J., R. R. Vondrak, and W. M. Farrell. Impact of dust on lunar exploration. ESA Work. Dust Planet. Syst. 4075:239–243, 2007.
Takhounts, E. G., M. J. Craig, K. Moorhouse, J. McFadden, and V. Hasija. Development of brain injury criteria (BrIC). SAE Tech. Pap. 2013-Novem, 243–266, 2013.
Taylor, C. E., Y. Zhang, Y. Qiu, H. B. Henninger, K. B. Foreman, and K. N. Bachus. Estimated forces and moments experienced by osseointegrated endoprostheses for lower extremity amputees. Gait Posture. 80:49–55, 2020.
Ye, X., D. A. Jones, J. P. Gaewsky, B. Koya, K. P. McNamara, M. Saffarzadeh, J. B. Putnam, J. T. Somers, F. S. Gayzik, J. D. Stitzel, and A. A. Weaver. Lumbar spine response of computational finite element models in multidirectional spaceflight landing conditions. J. Biomech. Eng. 142:051007, 2020.
Yoganandan, N., M. W. J. Arun, B. D. Stemper, F. A. Pintar, and D. J. Maiman. Biomechanics of human thoracolumbar spinal column trauma from vertical impact loading. Ann. Adv. Automot. Med. Assoc. Adv. Automot. Med. Annu. Sci. Conf. 57:155–166, 2013.
Yoganandan, N., S. Chirvi, F. A. Pintar, A. Banerjee, and L. Voo. Injury Risk Curves for the Human Cervical Spine from Inferior-to-Superior Loading. SAE Tech. Pap. 2019-Novem, pp. 271–292, 2018.
Acknowledgments
This study was supported by a NASA Human Research Program Student Augmentation Award to NASA Grant No. NNX16AP89G. The views expressed are those of the authors and do not represent the views of the GHBMC, NASA, or KBR. All simulations were run with the support of Cody Stevens and Adam Carlson.
Conflict of interest
Dr. Stitzel and Dr. Gayzik are members of Elemance, LLC, which provides academic and commercial licenses of the GHBMC-owned human body computer models.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Stefan M. Duma oversaw the review of this article.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Lalwala, M., Koya, B., Devane, K.S. et al. Simulated Astronaut Kinematics and Injury Risk for Piloted Lunar Landings and Launches While Standing. Ann Biomed Eng 50, 1857–1871 (2022). https://doi.org/10.1007/s10439-022-03002-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-022-03002-2