Skip to main content

Advertisement

Log in

Simulated Astronaut Kinematics and Injury Risk for Piloted Lunar Landings and Launches While Standing

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

During future lunar missions, astronauts may be required to pilot vehicles while standing, and the associated kinematic and injury response is not well understood. In this study, we used human body modeling to predict unsuited astronaut kinematics and injury risk for piloted lunar launches and landings in the standing posture. Three pulses (2–5 g; 10–150 ms rise times) were applied in 10 directions (vertical; ± 10-degree offsets) for a total of 30 simulations. Across all simulations, motion envelopes were computed to quantify displacement of the astronaut’s head (max 9.0 cm forward, 7.0 cm backward, 2.1 cm upward, 7.3 cm downward, 2.4 cm lateral) and arms (max 25 cm forward, 35 cm backward, 15 cm upward, 20 cm downward, 20 cm lateral). All head, neck, lumbar, and lower extremity injury metrics were within NASA’s tolerance limits, except tibia compression forces (0–1543 N upper tibia; 0–1482 N lower tibia; tolerance—1350 N) and revised tibia index (0.04–0.58 upper tibia; 0.03–0.48 lower tibia; tolerance—0.43) for the 2.7 g/150 ms pulse. Pulse magnitude and duration contributed over 80% to the injury metric values, whereas loading direction contributed less than 3%. Overall, these simulations suggest piloting a lunar lander vehicle in the standing posture presents a tibia injury risk which is potentially outside NASA’s acceptance limits and warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

2.7 g/150 ms:

Half-sinusoidal pulse with 2.7 g (26.5 m/s2) peak acceleration and 150 ms rise time

2 g/50 ms:

Half-sinusoidal pulse with 2 g (19.6 m/s2) peak acceleration and 50 ms rise time

5 g/10 ms:

Half-sinusoidal pulse with 5 g (49 m/s2) peak acceleration and 10 ms rise time

ACL:

Anterior cruciate ligament

AIS:

Abbreviated injury scale

Ant-post:

Anterior-posterior

ATD:

Anthropomorphic test device

BrIC:

Brain injury criterion

CG:

Center of gravity

FE:

Finite element

GHBMC:

Global human body models consortium

HBM:

Human body model

HIC:

Head injury criterion

IARV:

Injury assessment reference value

LCL:

Lateral collateral ligament

M50-PS:

GHBMC average-male simplified pedestrian model

MCL:

Medial collateral ligament

NASA:

National Aeronautics and Space Administration

N ij :

Neck injury criterion

PCL:

Posterior cruciate ligament

PMHS:

Post-mortem human subject

RTI:

Revised Tibia index

References

  1. Bruneau, D. A., and D. S. Cronin. Brain response of a computational head model for prescribed skull kinematics and simulated football helmet impact boundary conditions. J. Mech. Behav. Biomed. Mater. 115:104299, 2021.

    Article  Google Scholar 

  2. Caldwell, E., M. Gernhardt, J. T. Somers, D. Younker, and N. Newby. Evidence Report: Risk of Injury Due to Dynamic Loads. National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, Texas, 2012.

  3. Costa, C., J. Aira, B. Koya, W. Decker, J. Sink, S. Withers, R. Beal, S. Schieffer, S. Gayzik, J. Stitzel, and A. Weaver. Finite element reconstruction of a vehicle-to-pedestrian impact. Traffic Inj. Prev. 21:S145–S147, 2020.

    Article  Google Scholar 

  4. Decker, W. B., D. A. Jones, K. Devane, M. L. Davis, J. P. Patalak, and F. S. Gayzik. Simulation-based assessment of injury risk for an average male motorsport driver. Traffic Inj. Prev. 2020. https://doi.org/10.1080/15389588.2020.1802021.

    Article  Google Scholar 

  5. Elemance LLC. Global human body models consortium user manual: simplified pedestrians versions 1.5.2, 1.6.2, 2.4.2 for LS-DYNA. 2019.

  6. Funk, J. R., J. M. Cormier, C. E. Bain, H. Guzman, E. Bonugli, and S. J. Manoogian. Head and neck loading in everyday and vigorous activities. Ann. Biomed. Eng. 39:766–776, 2011.

    Article  Google Scholar 

  7. Gaewsky, J. P., D. A. Jones, X. Ye, B. Koya, K. P. McNamara, F. S. Gayzik, A. A. Weaver, J. B. Putnam, J. T. Somers, and J. D. Stitzel. Modeling human volunteers in multidirectional, uni-axial sled tests using a finite element human body model. Ann. Biomed. Eng. 47:487–511, 2019.

    Article  Google Scholar 

  8. Gayzik, F. S., D. P. Moreno, C. P. Geer, S. D. Wuertzer, R. S. Martin, and J. D. Stitzel. Development of a full body CAD dataset for computational modeling: a multi-modality approach. Ann. Biomed. Eng. 39:2568–2583, 2011.

    Article  CAS  Google Scholar 

  9. Hostetler, Z. S., J. Aira, J. D. Stitzel, and F. S. Gayzik. A computational study of the biomechanical response of the human lower extremity subjected to high rate vertical accelerative loading. IRCOBI Annual Meeting Proceedings, pp. 662–673, 2019.

  10. Institute of Medicine. Review of NASA’s evidence reports on human health risks: 2013 letter report. Washington, D.C.: National Academies Press, 2014. https://doi.org/10.17226/18575

  11. Jones, D. A., J. P. Gaewsky, J. T. Somers, F. S. Gayzik, A. A. Weaver, and J. D. Stitzel. Head injury metric response in finite element ATDs and a human body model in multidirectional loading regimes. Traffic Inj. Prev. 20:S96–S102, 2019.

    Article  Google Scholar 

  12. Kerrigan, J. R., B. J. Ivarsson, D. Bose, N. J. Madeley, S. A. Millington, K. S. Bhalla, and J. R. Crandall. Rate-sensitive constitutive and failure properties of human collateral knee ligaments. Proceedings of the 2003 IRCOBI conference, pp. 177–190, 2003. http://www.ircobi.org/wordpress/downloads/irc0111/2003/Session3/3.4.pdf

  13. Kuppa, S., J. Wang, M. Haffner, and R. Eppinger. Lower extremity injuries and associated injury criteria (2001-06-0160). SAE Tech. Pap., 2001. https://www.sae.org/publications/technical-papers/content/2001-06-0160/

  14. Mertz, H. J. Injury risk assessments based on dummy responses. In: Accidental Injury, edited by A. M. Nahum, and J. W. Melvin. New York: Springer, 2002, pp. 89–102. https://doi.org/10.1007/978-0-387-21787-1_5.

    Chapter  Google Scholar 

  15. National Academies of Sciences, Engineering, and Medicine. Review of NASA’s evidence reports on human health risks: 2015 letter report. Washington, D.C.: National Academies Press, 2016, pp. 1–82, https://doi.org/10.17226/21844

  16. National Aeronautics and Space Administration. NASA’s lunar exploration program overview, 2020. https://www.nasa.gov/sites/default/files/atoms/files/artemis_plan-20200921.pdf

  17. National Aeronautics and Space Administration. HRR - Gap - OP-101. , 2021. https://humanresearchroadmap.nasa.gov/Gaps/gap.aspx?i=740#

  18. National Aeronautics and Space Administration. HRR - Gap - OP-201. , 2021. https://humanresearchroadmap.nasa.gov/Gaps/gap.aspx?i=741

  19. National Aeronautics and Space Administration. HRR - Gap - OP-301. , 2021. https://humanresearchroadmap.nasa.gov/gaps/gap.aspx?i=742

  20. National Highway Traffic Safety Administration. Final economic assessment, FMVSS No. 201, upper interior head protection. Office of Regulatory Analysis, Plans and Policy. Washingt. DC, 1995.

  21. Noyes, F. R., D. L. Butler, E. S. Grood, R. F. Zernicke, and M. S. Hefzy. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J. Bone Joint Surg. Am. 66:344–352, 1984.

    Article  CAS  Google Scholar 

  22. Parr, J. C., M. E. Miller, J. A. Pellettiere, and R. A. Erich. Neck injury criteria formulation and injury risk curves for the ejection environment: A pilot study. Aviat. Space. Environ. Med. 84:1240–1248, 2013.

    Article  Google Scholar 

  23. Patrick, L. M., and C. C. Chou. Response of the human neck in flexion, extension and lateral flexion, 1976. https://trid.trb.org/view/61565

  24. Pellman, E. J., D. C. Viano, A. M. Tucker, I. R. Casson, and J. F. Waeckerle. Concussion in professional football: reconstruction of game impacts and injuries. Neurosurgery 53:799–812, 2003. (discussion 812-4)

    Article  Google Scholar 

  25. Pintar, F., P. Ivancic, M. Kleinberger, and J. Rupp. Occupant protection risk SRP research plan review. National Aeronautics and Space Administration, Jhonson Space Center, Houston, Texas, 2015. https://humanresearchroadmap.nasa.gov/reviews/

  26. Prietto, M. P., J. R. Bain, S. N. Stonebrook, and R. A. Settlage. Tensile strength of the human posterior cruciate ligament (PCL). Trans. Orthop. Res. Soc. 13:736–745, 1988.

    Google Scholar 

  27. Ramachandra, R., V. Pradhan, Y. S. Kang, R. Davidson, M. Humer, and J. Zhang. Effect of seat back restriction on head, neck and torso responses of front seat occupants when subjected to a moderate speed rear-impact, SAE Tech. Pap. 2021-01-0920, 2021. https://doi.org/10.4271/2021-01-0920

  28. Rohlmann, A., D. Pohl, A. Bender, F. Graichen, J. Dymke, H. Schmidt, and G. Bergmann. Activities of everyday life with high spinal loads. PLoS ONE. 9:e98510, 2014.

    Article  Google Scholar 

  29. Rowson, S., and S. M. Duma. Brain injury prediction: assessing the combined probability of concussion using linear and rotational head acceleration. Ann. Biomed. Eng. 41:873–882, 2013.

    Article  Google Scholar 

  30. Somasundaram, K., L. Zhang, D. Sherman, P. Begeman, D. Lyu, and J. M. Cavanaugh. Evaluating thoracolumbar spine response during simulated underbody blast impact using a total human body finite element model. J. Mech. Behav. Biomed. Mater. 100:103398, 2019.

    Article  CAS  Google Scholar 

  31. Somers, J. T., D. Gohmert, and J. W. Brinkley. Application of the Brinkley dynamic response criterion to spacecraft transient dynamic events. NASA Tech. Memo. NASA/TM-2013-217380-REV1, 2017. http://ston.jsc.nasa.gov/collections/trs/_techrep/TM-2013-217380.pdf

  32. Somers, J. T., T. Reiber, J. Pattarini, N. Newby, and P. Greenhalgh. Lunar transient accelerations white paper. NASA Tech. Memo. NASA/TM-20205008198 , 2020. https://ntrs.nasa.gov/citations/20205008198

  33. Stubbs, T. J., R. R. Vondrak, and W. M. Farrell. Impact of dust on lunar exploration. ESA Work. Dust Planet. Syst. 4075:239–243, 2007.

    Google Scholar 

  34. Takhounts, E. G., M. J. Craig, K. Moorhouse, J. McFadden, and V. Hasija. Development of brain injury criteria (BrIC). SAE Tech. Pap. 2013-Novem, 243–266, 2013.

  35. Taylor, C. E., Y. Zhang, Y. Qiu, H. B. Henninger, K. B. Foreman, and K. N. Bachus. Estimated forces and moments experienced by osseointegrated endoprostheses for lower extremity amputees. Gait Posture. 80:49–55, 2020.

    Article  Google Scholar 

  36. Ye, X., D. A. Jones, J. P. Gaewsky, B. Koya, K. P. McNamara, M. Saffarzadeh, J. B. Putnam, J. T. Somers, F. S. Gayzik, J. D. Stitzel, and A. A. Weaver. Lumbar spine response of computational finite element models in multidirectional spaceflight landing conditions. J. Biomech. Eng. 142:051007, 2020.

    Article  Google Scholar 

  37. Yoganandan, N., M. W. J. Arun, B. D. Stemper, F. A. Pintar, and D. J. Maiman. Biomechanics of human thoracolumbar spinal column trauma from vertical impact loading. Ann. Adv. Automot. Med. Assoc. Adv. Automot. Med. Annu. Sci. Conf. 57:155–166, 2013.

    Google Scholar 

  38. Yoganandan, N., S. Chirvi, F. A. Pintar, A. Banerjee, and L. Voo. Injury Risk Curves for the Human Cervical Spine from Inferior-to-Superior Loading. SAE Tech. Pap. 2019-Novem, pp. 271–292, 2018.

Download references

Acknowledgments

This study was supported by a NASA Human Research Program Student Augmentation Award to NASA Grant No. NNX16AP89G. The views expressed are those of the authors and do not represent the views of the GHBMC, NASA, or KBR. All simulations were run with the support of Cody Stevens and Adam Carlson.

Conflict of interest

Dr. Stitzel and Dr. Gayzik are members of Elemance, LLC, which provides academic and commercial licenses of the GHBMC-owned human body computer models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley A. Weaver.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1034 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalwala, M., Koya, B., Devane, K.S. et al. Simulated Astronaut Kinematics and Injury Risk for Piloted Lunar Landings and Launches While Standing. Ann Biomed Eng 50, 1857–1871 (2022). https://doi.org/10.1007/s10439-022-03002-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03002-2

Keywords

Navigation