Skip to main content
Log in

Toward Measuring the Mechanical Stresses Exerted by Branching Embryonic Airway Epithelial Explants in 3D Matrices of Matrigel

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Numerous organs in the bodies of animals, including the lung, kidney, and mammary gland, contain ramified networks of epithelial tubes. These structures arise during development via a process known as branching morphogenesis. Previous studies have shown that mechanical forces directly impact this process, but the patterns of mechanical stress exerted by branching embryonic epithelia are not well understood. This is, in part, owing to a lack of experimental tools. Traditional traction force microscopy assays rely on the use of compliant hydrogels with well-defined mechanical properties. Isolated embryonic epithelial explants, however, have only been shown to branch in three-dimensional matrices of reconstituted basement membrane protein, or Matrigel, a biomaterial with poorly characterized mechanical behavior, especially in the regime of large deformations. Here, to compute the traction stresses generated by branching epithelial explants, we quantified the finite-deformation constitutive behavior of gels of reconstituted basement membrane protein subjected to multi-axial mechanical loads. We then modified the mesenchyme-free assay for the ex vivo culture of isolated embryonic airway epithelial explants by suspending fluorescent microspheres within the surrounding gel and tracking their motion during culture. Surprisingly, the tracked bead motion was non-zero in regions of the gel far away from the explants, suggestive of passive swelling deformations within the matrix. To compute accurate traction stresses, these swelling deformations must be decomposed from those generated by the branching explants. We thus tracked the motion of beads suspended within cell-free matrices and quantified spatiotemporal patterns of gel swelling. Taken together, these passive swelling data can be combined with the measured mechanical properties of the gel to compute the traction forces exerted by intact embryonic epithelial explants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

taken from an individual lot of Matrigel. Mean ± SD shown for n = 19 specimens.

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Affolter, M., R. Zeller, and E. Caussinus. Tissue remodelling through branching morphogenesis. Nat. Rev. Mol. Cell Biol. 10:831–842, 2009

    Article  CAS  PubMed  Google Scholar 

  2. Aisenbrey, E. A., and W. L. Murphy. Synthetic alternatives to Matrigel. Nat. Rev. Mater. 5:539–551, 2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alcaraz, J., R. Xu, H. Mori, C. M. Nelson, R. Mroue, V. A. Spencer, D. Brownfield, D. C. Radisky, C. Bustamante, and M. J. Bissell. Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO J. 27:2829–2838, 2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bellusci, S., J. Grindley, H. Emoto, N. Itoh, and B. L. Hogan. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124:4867–4878, 1997

    Article  CAS  PubMed  Google Scholar 

  5. Beningo, K. A., and Y.-L. Wang. Flexible substrata for the detection of cellular traction forces. Trends Cell Biol. 12:79–84, 2002

    Article  CAS  PubMed  Google Scholar 

  6. Boudou, T., J. Ohayon, C. Picart, R. I. Pettigrew, and P. Tracqui. Nonlinear elastic properties of polyacrylamide gels: implications for quantification of cellular forces. Biorheology 46:191–205, 2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Butler, J. P., I. M. Tolić-Nørrelykke, B. Fabry, and J. J. Fredberg. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 282:C595–C605, 2002

    Article  CAS  PubMed  Google Scholar 

  8. Campàs, O., T. Mammoto, S. Hasso, R. A. Sperling, D. O’Connell, A. G. Bischof, R. Maas, D. A. Weitz, L. Mahadevan, and D. E. Ingber. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11:183–189, 2014

    Article  PubMed  CAS  Google Scholar 

  9. Cardoso, W. V., A. Itoh, H. Nogawa, I. Mason, and J. S. Brody. FGF-1 and FGF-7 induce distinct patterns of growth and differentiation in embryonic lung epithelium. Dev. Dyn. 208:398–405, 1997

    Article  CAS  PubMed  Google Scholar 

  10. Chanet, S., C. J. Miller, E. D. Vaishnav, B. Ermentrout, L. A. Davidson, and A. C. Martin. Actomyosin meshwork mechanosensing enables tissue shape to orient cell force. Nat. Commun. 8:15014, 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chaudhuri, O., J. Cooper-White, P. A. Janmey, D. J. Mooney, and V. B. Shenoy. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584:535–546, 2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chaudhuri, O., S. T. Koshy, C. B. da Cunha, J.-W. Shin, C. S. Verbeke, K. H. Allison, and D. J. Mooney. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13:970–978, 2014

    Article  CAS  PubMed  Google Scholar 

  13. Dembo, M., and Y.-L. Wang. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76:2307–2316, 199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eiraku, M., N. Takata, H. Ishibashi, M. Kawada, E. Sakakura, S. Okuda, K. Sekiguchi, T. Adachi, and Y. Sasai. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56, 2011

    Article  CAS  PubMed  Google Scholar 

  15. Filas, B. A., I. R. Efimov, and L. A. Taber. Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart. Anat. Rec. 290:1057–1068, 2007

    Article  Google Scholar 

  16. Franck, C., S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran. Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp. Mech. 47:427–438, 2007

    Article  Google Scholar 

  17. Gjorevski, N., A. S. Piotrowski, V. D. Varner, and C. M. Nelson. Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices. Sci. Rep. 5:11458, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gjorevski, N., N. Sachs, A. Manfrin, S. Giger, M. E. Bragina, P. Ordóñez-Morán, H. Clevers, and M. P. Lutolf. Designer matrices for intestinal stem cell and organoid culture. Nature 539:560–564, 2016

    Article  CAS  PubMed  Google Scholar 

  19. Gómez-González, M., E. Latorre, M. Arroyo, and X. Trepat. Measuring mechanical stress in living tissues. Nat. Rev. Phys. 2:300–317, 2020

    Article  Google Scholar 

  20. Goodwin, K., S. Mao, T. Guyomar, E. Miller, D. C. Radisky, A. Košmrlj, and C. M. Nelson. Smooth muscle differentiation shapes domain branches during mouse lung development. Development 146:dev181172, 2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goodwin, K., and C. M. Nelson. Branching morphogenesis. Development 147:dev184499, 2020

    Article  CAS  PubMed  Google Scholar 

  22. Goodwin, K., and C. M. Nelson. Mechanics of development. Dev. Cell 56:240–250, 2020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gordon, V. D., M. T. Valentine, M. L. Gardel, D. Andor-Ardó, S. Dennison, A. A. Bogdanov, D. A. Weitz, and T. S. Deisboeck. Measuring the mechanical stress induced by an expanding multicellular tumor system: a case study. Exp. Cell Res. 289:58–66, 2003

    Article  CAS  PubMed  Google Scholar 

  24. Hamburger, V., and H. L. Hamilton. A series of normal stages in the development of the chick embryo. J. Morphol. 88:49–92, 1951

    Article  CAS  PubMed  Google Scholar 

  25. Holzapfel, G. A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Hoboken: Wiley, 2000

    Google Scholar 

  26. Hughes, C. S., L. M. Postovit, and G. A. Lajoie. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10:1886–1890, 2010

    Article  CAS  PubMed  Google Scholar 

  27. Hur, S. S., Y. Zhao, Y.-S. Li, E. Botvinick, and S. Chien. Live cells exert 3-dimensional traction forces on their substrata. Cell. Mol. Bioeng. 2:425–436, 2009

    Article  PubMed  Google Scholar 

  28. Iber, D., and D. Menshykau. The control of branching morphogenesis. Open Biol. 3:130088, 2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Karzbrun, E., A. Kshirsagar, S. R. Cohen, J. H. Hanna, and O. Reiner. Human brain organoids on a chip reveal the physics of folding. Nat. Phys. 14:515–522, 2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, H. Y., M.-F. Pang, V. D. Varner, L. Kojima, E. Miller, D. C. Radisky, and C. M. Nelson. Localized smooth muscle differentiation is essential for epithelial bifurcation during branching morphogenesis of the mammalian lung. Dev. Cell 34:719–726, 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kleinman, H. K., and G. R. Martin. Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15:378–386, 2005

    Article  CAS  PubMed  Google Scholar 

  32. Lai, V. K., D. S. Nedrelow, S. P. Lake, B. Kim, E. M. Weiss, R. T. Tranquillo, and V. H. Barocas. Swelling of collagen-hyaluronic acid co-gels: an in vitro residual stress model. Ann. Biomed. Eng. 44:2984–2993, 2016

    Article  PubMed  PubMed Central  Google Scholar 

  33. Legant, W. R., J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Methods 7:969–971, 2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu, P., and Z. Werb. Patterning mechanisms of branched organs. Science 322:1506–1509, 2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Makarenkova, H. P., M. P. Hoffman, A. Beenken, A. V. Eliseenkova, R. Meech, C. Tsau, V. N. Patel, R. A. Lang, and M. Mohammadi. Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis. Sci. Signal. 2:ra55, 2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mammoto, A., K. M. Connor, T. Mammoto, C. W. Yung, D. Huh, C. M. Aderman, G. Mostoslavsky, L. E. H. Smith, and D. E. Ingber. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457:1103–1108, 2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martiel, J.-L., A. Leal, L. Kurzawa, M. Balland, I. Wang, T. Vignaud, Q. Tseng, and M. Théry. Measurement of cell traction forces with ImageJ. Methods Cell Biol. 125:269–287, 2015

    Article  CAS  PubMed  Google Scholar 

  38. Miller, C. J., and L. A. Davidson. The interplay between cell signalling and mechanics in developmental processes. Nat. Rev. Genet. 14:733–744, 2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mongera, A., P. Rowghanian, H. J. Gustafson, E. Shelton, D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio, J. Giammona, and O. Campàs. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561:401–405, 2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nam, S., K. H. Hu, M. J. Butte, and O. Chaudhuri. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. Proc. Natl. Acad. Sci. U.S.A. 113:5492–5497, 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nam, S., J. Lee, D. G. Brownfield, and O. Chaudhuri. Viscoplasticity enables mechanical remodeling of matrix by cells. Biophys. J. 111:2296–2308, 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nelson, C. M., and J. P. Gleghorn. Sculpting organs: mechanical regulation of tissue development. Annu. Rev. Biomed. Eng. 14:129–154, 2012

    Article  CAS  PubMed  Google Scholar 

  43. Nelson, C. M., J. P. Gleghorn, M.-F. Pang, J. M. Jaslove, K. Goodwin, V. D. Varner, E. Miller, D. C. Radisky, and H. A. Stone. Microfluidic chest cavities reveal that transmural pressure controls the rate of lung development. Development 144:4328–4335, 2017

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nogawa, H., and T. Ito. Branching morphogenesis of embryonic mouse lung epithelium in mesenchyme-free culture. Development 121:1015–1022, 199

    Article  CAS  PubMed  Google Scholar 

  45. Nogawa, H., K. Morita, and W. V. Cardoso. Bud formation precedes the appearance of differential cell proliferation during branching morphogenesis of mouse lung epithelium in vitro. Dev. Dyn. 213:228–235, 1998

    Article  CAS  PubMed  Google Scholar 

  46. Nogawa, H., and Y. Takahashi. Substitution for mesenchyme by basement-membrane-like substratum and epidermal growth factor in inducing branching morphogenesis of mouse salivary epithelium. Development 112:855–861, 1991

    Article  CAS  PubMed  Google Scholar 

  47. Park, W. Y., B. Miranda, D. Lebeche, G. Hashimoto, and W. V. Cardoso. FGF-10 is a chemotactic factor for distal epithelial buds during lung development. Dev. Biol. 201:125–134, 1998

    Article  CAS  PubMed  Google Scholar 

  48. Piotrowski, A. S., V. D. Varner, N. Gjorevski, and C. M. Nelson. Three-dimensional traction force microscopy of engineered epithelial tissues. Methods Mol. Biol. 1189:191–206, 2015

    Article  PubMed  Google Scholar 

  49. Poincloux, R., O. Collin, F. Lizárraga, M. Romao, M. Debray, M. Piel, and P. Chavrier. Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel. Proc. Natl. Acad. Sci. U.S.A. 108:1943–1948, 2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Polacheck, W. J., and C. S. Chen. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13:415–423, 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qiao, J., H. Sakurai, and S. K. Nigam. Branching morphogenesis independent of mesenchymal–epithelial contact in the developing kidney. Proc. Natl. Acad. Sci. U.S.A. 96:7330–7335, 1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reed, J., W. J. Walczak, O. N. Petzold, and J. K. Gimzewski. In situ mechanical interferometry of Matrigel films. Langmuir 25:36–39, 2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rivlin, R. S. Large elastic deformations of isotropic materials. I. Fundamental concepts. Philos. Trans. A 240:459–490, 1948

    Google Scholar 

  54. Sanz-Herrera, J. A., J. Barrasa-Fano, M. Cóndor, and H. V. Oosterwyck. Inverse method based on 3D nonlinear physically constrained minimisation in the framework of traction force microscopy. Soft Matter 17:10210–10222, 2020

    Article  Google Scholar 

  55. Sato, T., R. G. Vries, H. J. Snippert, M. van de Wetering, N. Barker, D. E. Stange, J. H. van Es, A. Abo, P. Kujala, P. J. Peters, and H. Clevers. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265, 2009

    Article  CAS  PubMed  Google Scholar 

  56. Serwane, F., A. Mongera, P. Rowghanian, D. A. Kealhofer, A. A. Lucio, Z. M. Hockenbery, and O. Campàs. In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Methods 14:181–186, 2017

    Article  CAS  PubMed  Google Scholar 

  57. Song, D., L. Dong, M. Gupta, L. Li, O. Klaas, A. Loghin, M. Beall, C. S. Chen, and A. A. Oberai. Recovery of tractions exerted by single cells in three-dimensional nonlinear matrices. J. Biomech. Eng. 142:081012, 2020

    Article  PubMed  PubMed Central  Google Scholar 

  58. Soofi, S. S., J. A. Last, S. J. Liliensiek, P. F. Nealey, and C. J. Murphy. The elastic modulus of MatrigelTM as determined by atomic force microscopy. J. Struct. Biol. 167:216–219, 2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Steinwachs, J., C. Metzner, K. Skodzek, N. Lang, I. Thievessen, C. Mark, S. Münster, K. E. Aifantis, and B. Fabry. Three-dimensional force microscopy of cells in biopolymer networks. Nat. Methods 13:171–176, 2016

    Article  CAS  PubMed  Google Scholar 

  60. Style, R. W., R. Boltyanskiy, G. K. German, C. Hyland, C. W. MacMinn, A. F. Mertz, L. A. Wilen, Y. Xu, and E. R. Dufresne. Traction force microscopy in physics and biology. Soft Matter 10:4047–4055, 2014

    Article  CAS  PubMed  Google Scholar 

  61. Taber, L. A. Nonlinear Theory of Elasticity: Applications in Biomechanics. Singapore: World Scientific, 2004

    Book  Google Scholar 

  62. Taber, L. A. Continuum Modeling in Mechanobiology. Cham: Springer Nature, 2020

    Book  Google Scholar 

  63. Tinevez, J.-Y., N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri. TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90, 2017

    Article  CAS  PubMed  Google Scholar 

  64. Varner, V. D., J. P. Gleghorn, E. Miller, D. C. Radisky, and C. M. Nelson. Mechanically patterning the embryonic airway epithelium. Proc. Natl. Acad. Sci. U.S.A. 112:9230–9235, 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Varner, V. D., and C. M. Nelson. Cellular and physical mechanisms of branching morphogenesis. Development 141:2750–2759, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Varner, V. D., D. A. Voronov, and L. A. Taber. Mechanics of head fold formation: investigating tissue-level forces during early development. Development 137:3801–3811, 2010

    Article  PubMed  PubMed Central  Google Scholar 

  67. Vernon, R. B., J. C. Angello, M. L. Iruela-Arispe, T. F. Lane, and E. H. Sage. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66:536–547, 1992

    CAS  PubMed  Google Scholar 

  68. Vining, K. H., and D. J. Mooney. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18:728–742, 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vukicevic, S., H. K. Kleinman, F. P. Luyten, A. B. Roberts, N. S. Roche, and A. H. Reddi. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202:1–8, 1992

    Article  CAS  PubMed  Google Scholar 

  70. Wang, J.H.-C., and J.-S. Lin. Cell traction force and measurement methods. Biomech. Model. Mechanobiol. 6:361, 2007

    Article  PubMed  Google Scholar 

  71. Wang, Y.-L., and R. J. Pelham. Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298:489–496, 1998

    Article  CAS  PubMed  Google Scholar 

  72. Weaver, M., N. R. Dunn, and B. L. Hogan. Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development 127:2695–2704, 2000

    Article  CAS  PubMed  Google Scholar 

  73. Yu, J. C., and R. Fernandez-Gonzalez. Local mechanical forces promote polarized junctional assembly and axis elongation in Drosophila. eLife 5:e10757, 2016

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institutes of Health (R01HL145147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor D. Varner.

Additional information

Associate Editor Debra T. Auguste oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 524 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, L.S., Varner, V.D. Toward Measuring the Mechanical Stresses Exerted by Branching Embryonic Airway Epithelial Explants in 3D Matrices of Matrigel. Ann Biomed Eng 50, 1143–1157 (2022). https://doi.org/10.1007/s10439-022-02989-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02989-y

Keywords

Navigation