Skip to main content
Log in

Glutamate Receptors Mediate Changes to Dendritic Mitochondria in Neurons Grown on Stiff Substrates

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The stiffness of brain tissue changes during development and disease. These changes can affect neuronal morphology, specifically dendritic arborization. We previously reported that N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors regulate dendrite number and branching in a manner that is dependent on substrate stiffness. Since mitochondria affect the shape of dendrites, in this study, we determined whether the stiffness of substrates on which rat hippocampal neurons are grown affects mitochondrial characteristics and if glutamate receptors mediate the effects of substrate stiffness. Dendritic mitochondria are small, short, simple, and scarce in neurons cultured on substrates of 0.5 kPa stiffness. In contrast, dendritic mitochondria are large, long, complex, and low in number in neurons grown on substrates of 4 kPa stiffness. Dendritic mitochondria of neurons cultured on glass are high in number and small with complex shapes. Treatment of neurons grown on the stiffer gels or glass with the NMDA and AMPA receptor antagonists, 2-amino-5-phosphonopentanoic acid and 6-cyano-7-nitroquinoxaline-2,3-dione, respectively, results in mitochondrial characteristics of neurons grown on the softer substrate. These results suggest that glutamate receptors play important roles in regulating both mitochondrial morphology and dendritic arborization in response to substrate stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Akashi, K., T. Kakizaki, H. Kamiya, M. Fukaya, M. Yamasaki, M. Abe, R. Natsume, M. Watanabe, and K. Sakimura. NMDA receptor GluN2B (GluR epsilon 2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses. J. Neurosci. 29:10869–10882, 2009

    Article  CAS  Google Scholar 

  2. Bartolak-Suki, E., J. Imsirovic, Y. Nishibori, R. Krishnan, and B. Suki. Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors. Int. J. Mol. Sci. 18:1812, 2017

    Article  Google Scholar 

  3. Bernard-Trifilo, J. A., E. A. Kramar, R. Torp, C. Y. Lin, E. A. Pineda, G. Lynch, and C. M. Gall. Integrin signaling cascades are operational in adult hippocampal synapses and modulate NMDA receptor physiology. J. Neurochem. 93:834–849, 2005

    Article  CAS  Google Scholar 

  4. Catanzaro, M. P., A. Weiner, A. Kaminaris, C. Li, F. Cai, F. Zhao, S. Kobayashi, T. Kobayashi, Y. Huang, H. Sesaki, and Q. Liang. Doxorubicin-induced cardiomyocyte death is mediated by unchecked mitochondrial fission and mitophagy. FASEB J. 33:11096–11108, 2019

    Article  CAS  Google Scholar 

  5. Chen, K., Y. Wang, X. Deng, L. Guo, and C. Wu. Extracellular matrix stiffness regulates mitochondrial dynamics through PINCH-1- and kindlin-2-mediated signalling. Curr. Res. Cell Biol.2:100008, 2021

    Article  CAS  Google Scholar 

  6. Chihara, T., D. Luginbuhl, and L. Luo. Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. Nat. Neurosci. 10:828–837, 2007

    Article  CAS  Google Scholar 

  7. Flanagan, L. A., Y. E. Ju, B. Marg, M. Osterfield, and P. A. Janmey. Neurite branching on deformable substrates. Neuroreport. 13:2411–2415, 2002

    Article  Google Scholar 

  8. Fukumitsu, K., K. Fujishima, A. Yoshimura, Y. K. Wu, J. Heuser, and M. Kengaku. Synergistic action of dendritic mitochondria and creatine kinase maintains ATP homeostasis and actin dynamics in growing neuronal dendrites. J. Neurosci. 35:5707–5723, 2015

    Article  CAS  Google Scholar 

  9. Galvao, J., B. Davis, M. Tilley, E. Normando, M. R. Duchen, and M. F. Cordeiro. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 28:1317–1330, 2014

    Article  CAS  Google Scholar 

  10. Helle, S. C. J., Q. Feng, M. J. Aebersold, L. Hirt, R. R. Gruter, A. Vahid, A. Sirianni, S. Mostowy, J. G. Snedeker, A. Saric, T. Idema, T. Zambelli, and B. Kornmann. Mechanical force induces mitochondrial fission. Elife. 2017. https://doi.org/10.7554/eLife.30292

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jiang, F. X., B. Yurke, B. L. Firestein, and N. A. Langrana. Neurite outgrowth on a DNA crosslinked hydrogel with tunable stiffnesses. Ann. Biomed. Eng. 36:1565–1579, 2008

    Article  Google Scholar 

  12. Juhasz, G., G. Vass, Z. Bozso, D. Budai, B. Penke, and V. Szegedi. Integrin activation modulates NMDA and AMPA receptor function of CA1 cells in a dose-related fashion in vivo. Brain Res. 1233:20–26, 2008

    Article  CAS  Google Scholar 

  13. Kimura, T., and F. Murakami. Evidence that dendritic mitochondria negatively regulate dendritic branching in pyramidal neurons in the neocortex. J. Neurosci. 34:6938–6951, 2014

    Article  CAS  Google Scholar 

  14. Kiryushko, D., V. Berezin, and E. Bock. Regulators of neurite outgrowth: role of cell adhesion molecules. Ann. N. Y. Acad. Sci. 1014:140–154, 2004

    Article  CAS  Google Scholar 

  15. Kramar, E. A., J. A. Bernard, C. M. Gall, and G. Lynch. Integrins modulate fast excitatory transmission at hippocampal synapses. J. Biol. Chem. 278:10722–10730, 2003

    Article  CAS  Google Scholar 

  16. Langhammer, C. G., M. L. Previtera, E. S. Sweet, S. S. Sran, M. Chen, and B. L. Firestein. Automated Sholl analysis of digitized neuronal morphology at multiple scales: Whole cell Sholl analysis versus Sholl analysis of arbor subregions. Cytometry A. 77:1160–1168, 2010

    Article  Google Scholar 

  17. Lee, J. H., H. Y. Lee, and H. W. Kim. Adhesive proteins linked with focal adhesion kinase regulate neurite outgrowth of PC12 cells. Acta Biomater. 8:165–172, 2012

    Article  CAS  Google Scholar 

  18. Lin, B., A. C. Arai, G. Lynch, and C. M. Gall. Integrins regulate NMDA receptor-mediated synaptic currents. J. Neurophysiol. 89:2874–2878, 2003

    Article  CAS  Google Scholar 

  19. Lyra-Leite, D. M., A. P. Petersen, N. R. Ariyasinghe, N. Cho, and M. L. McCain. Mitochondrial architecture in cardiac myocytes depends on cell shape and matrix rigidity. J. Mol. Cell Cardiol. 150:32–43, 2021

    Article  CAS  Google Scholar 

  20. Ma, L., J. X. Dong, W. R. Fu, X. Y. Li, J. Chen, and Y. Liu. Mitochondrial morphology and function impaired by dimethyl sulfoxide and dimethyl formamide. J. Bioenerg. Biomembr. 50:297–305, 2018

    Article  CAS  Google Scholar 

  21. MacVicar, T., and T. Langer. Mechanometabolism: mitochondria promote resilience under pressure. Curr. Biol. 31:R859–R861, 2021

    Article  CAS  Google Scholar 

  22. Previtera, M. L., and B. L. Firestein. Glutamate affects dendritic morphology of neurons grown on compliant substrates. Biotechnol. Prog. 31:1128–1132, 2015

    Article  CAS  Google Scholar 

  23. Previtera, M. L., C. G. Langhammer, N. A. Langrana, and B. L. Firestein. Regulation of dendrite arborization by substrate stiffness is mediated by glutamate receptors. Ann. Biomed. Eng. 38:3733–3743, 2010

    Article  Google Scholar 

  24. Qin, Y., W. Jiang, A. Li, M. Gao, H. Liu, Y. Gao, X. Tian, and G. Gong. The combination of paraformaldehyde and glutaraldehyde is a potential fixative for mitochondria. Biomolecules. 11(5):711, 2021

    Article  CAS  Google Scholar 

  25. Richter, K. N., N. H. Revelo, K. J. Seitz, M. S. Helm, D. Sarkar, R. S. Saleeb, E. D’Este, J. Eberle, E. Wagner, C. Vogl, D. F. Lazaro, F. Richter, J. Coy-Vergara, G. Coceano, E. S. Boyden, R. R. Duncan, S. W. Hell, M. A. Lauterbach, S. E. Lehnart, T. Moser, T. F. Outeiro, P. Rehling, B. Schwappach, I. Testa, B. Zapiec, and S. O. Rizzoli. Glyoxal as an alternative fixative to formaldehyde in immunostaining and super-resolution microscopy. EMBO J. 37:139–159, 2018

    Article  CAS  Google Scholar 

  26. Rintoul, G. L., A. J. Filiano, J. B. Brocard, G. J. Kress, and I. J. Reynolds. Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J. Neurosci. 23:7881–7888, 2003

    Article  CAS  Google Scholar 

  27. Sanchez, C., L. Ulloa, R. J. Montoro, J. Lopez-Barneo, and J. Avila. NMDA-glutamate receptors regulate phosphorylation of dendritic cytoskeletal proteins in the hippocampus. Brain Res. 765:141–148, 1997

    Article  CAS  Google Scholar 

  28. Singh, P., S. Doshi, J. M. Spaethling, A. J. Hockenberry, T. P. Patel, D. M. Geddes-Klein, D. R. Lynch, and D. F. Meaney. N-methyl-D-aspartate receptor mechanosensitivity is governed by C terminus of NR2B subunit. J. Biol. Chem. 287:4348–4359, 2012

    Article  CAS  Google Scholar 

  29. Stukel, J. M., and R. K. Willits. Mechanotransduction of neural cells through cell-substrate interactions. Tissue Eng. Part B Rev. 22:173–182, 2016

    Article  CAS  Google Scholar 

  30. Sur, S., C. J. Newcomb, M. J. Webber, and S. I. Stupp. Tuning supramolecular mechanics to guide neuron development. Biomaterials. 34:4749–4757, 2013

    Article  CAS  Google Scholar 

  31. Swiatkowski, P., I. Nikolaeva, G. Kumar, A. Zucco, B. F. Akum, M. V. Patel, G. D’Arcangelo, and B. L. Firestein. Role of Akt-independent mTORC1 and GSK3beta signaling in sublethal NMDA-induced injury and the recovery of neuronal electrophysiology and survival. Sci. Rep. 7:1539, 2017

    Article  Google Scholar 

  32. Tanaka, A., Y. Fujii, N. Kasai, T. Okajima, and H. Nakashima. Regulation of neuritogenesis in hippocampal neurons using stiffness of extracellular microenvironment. PLoS ONE.13:e0191928, 2018

    Article  Google Scholar 

  33. Tarus, D., L. Hamard, F. Caraguel, D. Wion, A. Szarpak-Jankowska, B. van der Sanden, and R. Auzely-Velty. Design of hyaluronic acid hydrogels to promote neurite outgrowth in three dimensions. ACS Appl. Mater. Interfaces. 8:25051–25059, 2016

    Article  CAS  Google Scholar 

  34. Tharp, K. M., R. Higuchi-Sanabria, G. A. Timblin, B. Ford, C. Garzon-Coral, C. Schneider, J. M. Muncie, C. Stashko, J. R. Daniele, A. S. Moore, P. A. Frankino, S. Homentcovschi, S. S. Manoli, H. Shao, A. L. Richards, K. H. Chen, J. T. Hoeve, G. M. Ku, M. Hellerstein, D. K. Nomura, K. Saijo, J. Gestwicki, A. R. Dunn, N. J. Krogan, D. L. Swaney, A. Dillin, and V. M. Weaver. Adhesion-mediated mechanosignaling forces mitohormesis. Cell Metab. 33:1322-1341.e1313, 2021

    Article  CAS  Google Scholar 

  35. Wen, Y. Q., X. Gao, A. Wang, Y. Yang, S. Liu, Z. Yu, G. B. Song, and H. C. Zhao. Substrate stiffness affects neural network activity in an extracellular matrix proteins dependent manner. Colloids Surf. B Biointerfaces. 170:729–735, 2018

    Article  CAS  Google Scholar 

  36. Westrate, L. M., J. A. Drocco, K. R. Martin, W. S. Hlavacek, and J. P. MacKeigan. Mitochondrial morphological features are associated with fission and fusion events. PLoS ONE.9:e95265, 2014

    Article  Google Scholar 

  37. Wiemerslage, L., and D. Lee. Quantification of mitochondrial morphology in neurites of dopaminergic neurons using multiple parameters. J. Neurosci. Methods. 262:56–65, 2016

    Article  CAS  Google Scholar 

  38. Youle, R. J., and A. M. van der Bliek. Mitochondrial fission, fusion, and stress. Science. 337:1062–1065, 2012

    Article  CAS  Google Scholar 

  39. Yu, Y., S. Liu, X. Wu, Z. Yu, Y. Xu, W. Zhao, I. Zavodnik, J. Zheng, C. Li, and H. Zhao. Mechanism of stiff substrates up-regulate cultured neuronal network activity. ACS Biomater. Sci. Eng. 5:3475–3482, 2019

    Article  CAS  Google Scholar 

  40. Zhang, Q. Y., Y. Y. Zhang, J. Xie, C. X. Li, W. Y. Chen, B. L. Liu, X. A. Wu, S. N. Li, B. Huo, L. H. Jiang, and H. C. Zhao. Stiff substrates enhance cultured neuronal network activity. Sci. Rep. 4:6215, 2014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by New Jersey Commission Brain Injury Research grants # CBIR14PIL005 (to N.N.B.) and CBIR14IRG019 (to B.L.F.), a Rutgers Division of Life Sciences Summer Undergraduate Research Fellowship (to S.K.), and a Rutgers Aresty Undergraduate Research Fellowship (to A.J.K.). A.O. was supported by New Jersey Commission Brain Injury Research fellowship # CBIR19FEL018 and National Institutes of Health Biotechnology Training Grant T32 GM008339-20.

Author information

Authors and Affiliations

Authors

Contributions

SK: Data curation; Formal analysis; Methodology; Visualization; Writing—original draft. AJK: Data curation; Formal analysis; Investigation; Methodology; Visualization; Writing—review & editing; AO: Investigation; Methodology; NNB: Conceptualization; Funding acquisition; Methodology; Project administration; Resources; Supervision; Visualization; Writing—review & editing. BLF: Conceptualization; Funding acquisition; Methodology; Project administration; Resources; Supervision; Visualization; Writing—original draft; Writing—review & editing.

Corresponding author

Correspondence to Bonnie L. Firestein.

Ethics declarations

Conflict of interest

All authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Associate Editor Rebecca Willits oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumarapuram, S., Kunnath, A.J., Omelchenko, A. et al. Glutamate Receptors Mediate Changes to Dendritic Mitochondria in Neurons Grown on Stiff Substrates. Ann Biomed Eng 50, 1116–1133 (2022). https://doi.org/10.1007/s10439-022-02987-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02987-0

Keywords

Navigation