Abstract
Repair and replacement solutions for congenitally diseased heart valves capable of post-surgery growth and adaptation have remained elusive. Tissue engineered heart valves (TEHVs) offer a potential biological solution that addresses the drawbacks of existing valve replacements. Typically, TEHVs are made from thin, fibrous biomaterials that either become cell populated in vitro or in situ. Often, TEHV designs poorly mimic the anisotropic mechanical properties of healthy native valves leading to inadequate biomechanical function. Mechanical conditioning of engineered tissues with anisotropic strain application can induce extracellular matrix remodelling to alter the anisotropic mechanical properties of a construct, but implementation has been limited to small-scale set-ups. To address this limitation for TEHV applications, we designed and built a mechanobioreactor capable of modulating biaxial strain anisotropy applied to large, thin, biomaterial sheets in vitro. The bioreactor can independently control two orthogonal stretch axes to modulate applied strain anisotropy on biomaterial sheets from 13 × 13 mm2 to 70 × 40 mm2. A design of experiments was performed using experimentally validated finite element (FE) models and demonstrated that biaxial strain was applied uniformly over a larger percentage of the cell seeded area for larger sheets (13 × 13 mm2: 58% of sheet area vs. 52 × 31 mm2: 86% of sheet area). Furthermore, bioreactor prototypes demonstrated that over 70% of the cell seeding area remained uniformly strained under different prescribed protocols: equibiaxial amplitudes between 5 to 40%, cyclic frequencies between 0.1 to 2.5 Hz and anisotropic strain ratios between 0:1 (constrained uniaxial) to 2:1. Lastly, proof-of-concept experiments were conducted where we applied equibiaxial (εx = εy = 8.75%) and anisotropic (εx = 12.5%, εy = 5%) strain protocols to cell-seeded, electrospun scaffolds. Cell nuclei and F-actin aligned to the vector-sum strain direction of each prescribed protocol (nuclei alignment: equibiaxial: 43.2° ± 1.8°, anisotropic: 17.5° ± 1.7°; p < 0.001). The abilities of this bioreactor to prescribe different strain amplitude, frequency and strain anisotropy protocols to cell-seeded scaffolds will enable future studies into the effects of anisotropic loading protocols on mechanically conditioned TEHVs and other engineered planar connective tissues.
Similar content being viewed by others
References
Barcik, J., M. Ernst, M. Balligand, C. E. Dlaska, L. Drenchev, S. Zeiter, D. R. Epari, and M. Windolf. Short-term bone healing response to mechanical stimulation—a case series conducted on sheep. Biomedicines. 9:988, 2021.
Bertolero, M. A., J. D. Dworkin, S. U. David, C. López Lloreda, P. Srivastava, J. Stiso, D. Zhou, K. Dzirasa, D. A. Fair, A. N. Kaczkurkin, B. Jones Marlin, D. Shohamy, L. Q. Uddin, P. Zurn, and D. S. Bassett. Racial and ethnic imbalance in neuroscience reference lists and intersections with gender. bioRxiv. 2020. https://doi.org/10.1101/2020.10.12.336230%3e.
Boonen, K. J. M., M. L. P. Langelaan, R. B. Polak, D. W. J. van der Schaft, F. P. T. Baaijens, and M. J. Post. Effects of a combined mechanical stimulation protocol: value for skeletal muscle tissue engineering. J. Biomech. 43:1514–1521, 2010.
Chen, K., A. Vigliotti, M. Bacca, R. M. McMeeking, V. S. Deshpande, and J. W. Holmes. Role of boundary conditions in determining cell alignment in response to stretch. Proc. Natl. Acad. Sci. U.S.A. 115:986–991, 2018.
Chesler, N. C., G. Barabino, S. N. Bhatia, and R. Richards-Kortum. The pipeline still leaks and more than you think: a status report on gender diversity in biomedical engineering. Ann. Biomed. Eng. 38:1928–1935, 2010.
Chester, A. H., and K. J. Grande-Allen. Which biological properties of heart valves are relevant to tissue engineering? Front. Cardiovasc. Med. 7:63, 2020.
Chong, J. E., J. P. Santerre, and R. A. Kandel. Generation of an in vitro model of the outer annulus fibrosus–cartilage interface. JOR Spine. 3:1–11, 2020.
Coyan, G. N., L. da Mota Silveira-Filho, Y. Matsumura, S. K. Luketich, W. Katz, V. Badhwar, W. R. Wagner, and A. D’Amore. Acute in vivo functional assessment of a biodegradable stentless elastomeric tricuspid valve. J. Cardiovasc. Transl. Res. 13:796–805, 2020.
Dijkman, P. E., E. S. Fioretta, L. Frese, F. S. Pasqualini, and S. P. Hoerstrup. Heart valve replacements with regenerative capacity. Transfus. Med. Hemotherapy. 43:282–290, 2016.
Eilaghi, A., J. G. Flanagan, G. W. Brodland, and C. R. Ethier. Strain uniformity in biaxial specimens is highly sensitive to attachment details. J. Biomech. Eng.131:091003, 2009.
Emmert, M. Y., B. A. Schmitt, S. Loerakker, B. Sanders, H. Spriestersbach, E. S. Fioretta, L. Bruder, K. Brakmann, S. E. Motta, V. Lintas, P. E. Dijkman, L. Frese, F. Berger, F. P. T. Baaijens, and S. P. Hoerstrup. Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Sci. Transl. Med. 10:eaan4587, 2018.
Fioretta, E. S., S. E. Motta, V. Lintas, S. Loerakker, K. K. Parker, F. P. T. Baaijens, V. Falk, S. P. Hoerstrup, and M. Y. Emmert. Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nat. Rev. Cardiol. 18:92–116, 2021.
Ghazanfari, S., A. Driessen-Mol, C. V. C. Bouten, and F. P. T. Baaijens. Modulation of collagen fiber orientation by strain-controlled enzymatic degradation. Acta Biomater. 35:118–126, 2016.
Gould, R. A., K. Chin, T. P. Santisakultarm, A. Dropkin, J. M. Richards, C. B. Schaffer, and J. T. Butcher. Cyclic strain anisotropy regulates valvular interstitial cell phenotype and tissue remodeling in three-dimensional culture. Acta Biomater. 8:1710–1719, 2012.
He, S., C. Liu, X. Li, S. Ma, B. Huo, and B. Ji. Dissecting collective cell behavior in polarization and alignment on micropatterned substrates. Biophys. J. 109:489–500, 2015.
Hinton, R. B., and K. E. Yutzey. Heart valve structure and function in development and disease. Annu. Rev. Physiol. 73:29–46, 2011.
Hochleitner, G., F. Chen, C. Blum, P. D. Dalton, B. Amsden, and J. Groll. Melt electrowriting below the critical translation speed to fabricate crimped elastomer scaffolds with non-linear extension behaviour mimicking that of ligaments and tendons. Acta Biomater. 72:110–120, 2018.
Hu, J., J. D. Humphrey, and A. T. Yeh. Characterization of engineered tissue development under biaxial stretch using nonlinear optical microscopy. Tissue Eng. Part A. 15:1553–1564, 2009.
Huang, C., K. Miyazaki, S. Akaishi, A. Watanabe, H. Hyakusoku, and R. Ogawa. Biological effects of cellular stretch on human dermal fibroblasts. J. Plast. Reconstr. Aesthetic Surg. 66:e351–e361, 2013.
Iwasaki, K., K. Kojima, S. Kodama, A. C. Paz, M. Chambers, M. Umezu, and C. A. Vacanti. Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor. Circulation. 118:52–57, 2008.
Jana, S., A. Lerman, and R. D. Simari. In vitro model of a fibrosa layer of a heart valve. ACS Appl. Mater. Interfaces. 7:20012–20020, 2015.
Kim, M. K. M., M. J. Burns, M. E. Serjeant, and C. A. Séguin. The mechano-response of murine annulus fibrosus cells to cyclic tensile strain is frequency dependent. JOR SPINE. 3:1–19, 2020.
Kluin, J., H. Talacua, A. I. P. M. Smits, M. Y. Emmert, M. C. P. Brugmans, E. S. Fioretta, P. E. Dijkman, S. H. M. Söntjens, R. Duijvelshoff, S. Dekker, M. W. J. T. Janssen-van den Broek, V. Lintas, A. Vink, S. P. Hoerstrup, H. M. Janssen, P. Y. W. Dankers, F. P. T. Baaijens, and C. V. C. Bouten. In situ heart valve tissue engineering using a bioresorbable elastomeric implant—from material design to 12 months follow-up in sheep. Biomaterials. 125:101–117, 2017.
Lei, Y., S. Masjedi, and Z. Ferdous. A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor. J. Mech. Behav. Biomed. Mater. 75:351–358, 2017.
Liu, C., C. Zhu, J. Li, P. Zhou, M. Chen, H. Yang, and B. Li. The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells. Bone Res. 3:15012, 2015.
Liu, H., J. F. Usprech, P. K. Parameshwar, Y. Sun, and C. A. Simmons. Combinatorial screen of dynamic mechanical stimuli for predictive control of MSC mechano-responsiveness. Sci. Adv. 2021. https://doi.org/10.1126/sciadv.abe7204.
Malladi, S., D. Miranda-Nieves, L. Leng, S. J. Grainger, C. Tarabanis, A. P. Nesmith, R. Kosaraju, C. A. Haller, K. K. Parker, E. L. Chaikof, and A. Günther. Continuous formation of ultrathin, strong collagen sheets with tunable anisotropy and compaction. ACS Biomater. Sci. Eng. 6:4236–4246, 2020.
May, L. E., S. A. Scholtz, R. Suminski, and K. M. Gustafson. Aerobic exercise during pregnancy influences infant heart rate variability at one month of age. Early Hum. Dev. 90:33–38, 2014.
Metzler, S. A., C. S. Digesu, J. I. Howard, S. D. F. To, and J. N. Warnock. Live en face imaging of aortic valve leaflets under mechanical stress. Biomech. Model. Mechanobiol. 11:355–361, 2012.
Mol, A., N. J. B. Driessen, M. C. M. Rutten, S. P. Hoerstrup, C. V. C. Bouten, and F. P. T. Baaijens. Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach. Ann. Biomed. Eng. 33:1778–1788, 2005.
Oomen, P. J. A., S. Loerakker, D. Van Geemen, J. Neggers, M. J. T. H. Goumans, A. J. Van Den Bogaerdt, A. J. J. C. Bogers, C. V. C. Bouten, and F. P. T. Baaijens. Age-dependent changes of stress and strain in the human heart valve and their relation with collagen remodeling. Acta Biomater. 29:161–169, 2016.
Pennisi, C. P., C. G. Olesen, M. de Zee, J. Rasmussen, and V. Zachar. Uniaxial cyclic strain drives assembly and differentiation of skeletal myocytes. Tissue Eng. Part A. 17:2543–2550, 2011.
Picu, R. C., S. Deogekar, and M. R. Islam. Poisson’s contraction and fiber kinematics in tissue: insight from collagen network simulations. J. Biomech. Eng. 140:1–12, 2018.
Puperi, D. S., A. Kishan, Z. E. Punske, Y. Wu, E. Cosgriff-Hernandez, J. L. West, and K. J. Grande-Allen. Electrospun polyurethane and hydrogel composite scaffolds as biomechanical mimics for aortic valve tissue engineering. ACS Biomater. Sci. Eng. 2:1546–1558, 2016.
Rouze, N. C., M. H. Wang, M. L. Palmeri, and K. R. Nightingale. Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium. J. Biomech. 46:2761–2768, 2013.
Sun, W., M. S. Sacks, and M. J. Scott. Effects of boundary conditions on the estimation of the planar biaxial mechanical properties of soft tissues. J. Biomech. Eng. 127:709, 2005.
Syedain, Z. H., B. Haynie, S. L. Johnson, M. Lahti, J. Berry, J. P. Carney, J. Li, R. C. Hill, K. C. Hansen, G. Thrivikraman, R. Bianco, and R. T. Tranquillo. Pediatric tri-tube valved conduits made from fibroblast-produced extracellular matrix evaluated over 52 weeks in growing lambs. Sci. Transl. Med. 13:eabb7225, 2021.
Syedain, Z. H., and R. T. Tranquillo. Controlled cyclic stretch bioreactor for tissue-engineered heart valves. Biomaterials. 30:4078–4084, 2009.
Tambe, D. T., C. Corey Hardin, T. E. Angelini, K. Rajendran, C. Y. Park, X. Serra-Picamal, E. H. Zhou, M. H. Zaman, J. P. Butler, D. A. Weitz, J. J. Fredberg, and X. Trepat. Collective cell guidance by cooperative intercellular forces. Nat. Mater. 10:469–475, 2011.
Tang, Y. W., R. S. Labow, and J. P. Santerre. Enzyme-induced biodegradation of polycarbonate-polyurethanes: dependence on hard-segment chemistry. J. Biomed. Mater. Res. 57:597–611, 2001.
Thomopoulos, S., G. M. Fomovsky, P. L. Chandran, and J. W. Holmes. Collagen fiber alignment does not explain mechanical anisotropy in fibroblast populated collagen gels. J. Biomech. Eng. 129:642–650, 2007.
Thrivikraman, G., A. Jagiełło, V. K. Lai, S. L. Johnson, M. Keating, A. Nelson, B. Schultz, C. M. Wang, A. J. Levine, E. L. Botvinick, and R. T. Tranquillo. Cell contact guidance via sensing anisotropy of network mechanical resistance. Proc. Natl. Acad. Sci. U.S.A.118:e2024942118, 2021.
Tremblay, D., C. M. Cuerrier, L. Andrzejewski, E. R. O’Brien, and A. E. Pelling. A novel stretching platform for applications in cell and tissue mechanobiology. J. Vis. Exp. 2014. https://doi.org/10.3791/51454.
Van Geemen, D., A. L. F. Soares, P. J. A. Oomen, A. Driessen-Mol, M. W. J. T. Janssen-Van Den-Broek, A. J. Van Den Bogaerdt, A. J. J. C. Bogers, M. J. T. H. Goumans, F. P. T. Baaijens, and C. V. C. Bouten. Age-dependent changes in geometry, tissue composition and mechanical properties of fetal to adult cryopreserved human heart valves. PLoS ONE. 11:e0149020, 2016.
Venkataraman, L., C. A. Bashur, and A. Ramamurthi. Impact of cyclic stretch on induced elastogenesis within collagenous conduits. Tissue Eng. Part A. 20:1403–1415, 2014.
Wahlsten, A., D. Rütsche, M. Nanni, C. Giampietro, T. Biedermann, E. Reichmann, and E. Mazza. Mechanical stimulation induces rapid fibroblast proliferation and accelerates the early maturation of human skin substitutes. Biomaterials.273:120779, 2021.
Wobbrock, J. O., L. Findlater, D. Gergle, and J. J. Higgins. The Aligned Rank Transform for nonparametric factorial analyses using only ANOVA procedures. In CHI ‘11: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2011. https://doi.org/10.1145/1978942.1978963.
Wolf, S., P. Augat, K. Eckert-Hübner, A. Laule, G. D. Krischak, and L. E. Claes. Effects of high-frequency, low-magnitude mechanical stimulus on bone healing. Clin. Orthop. Relat. Res. 385:192–198, 2001.
Yang, L., R. A. Kandel, G. Chang, and J. P. Santerre. Polar surface chemistry of nanofibrous polyurethane scaffold affects annulus fibrosus cell attachment and early matrix accumulation. J. Biomed. Mater. Res. Part A 91A:1089–1099, 2009.
Zhang, W., Y. Feng, C.-H. Lee, K. L. Billiar, and M. S. Sacks. A generalized method for the analysis of planar biaxial mechanical data using tethered testing configurations. J. Biomech. Eng. 137:064501, 2015.
Acknowledgments
This work was supported by a Canadian Institute of Health Research/National Sciences and Engineering Research Council (NSERC) Collaborative Health Research Project (CPG-151962/ CHRPJ 508364-17) and seed funding from the Translational Biology and Engineering Program in the Ted Rogers Center for Heart Research. E.W was funded by an NSERC Canada Graduate Scholarships-Master’s award; an NSERC Postgraduate Scholarship-Doctorate award, an NSERC CONNECT! Collaborative Research & Training Experience program award; an Ontario Graduate Scholarship; and a Milligan Graduate Fellowship through the Department of Mechanical and Industrial Engineering at the University of Toronto. We would like to further acknowledge Dr. Cheryle A. Séguin and Dr. Mark M. K. Kim (Department of Physiology and Pharmacology, Western University, London ON) for their feedback on the bioreactor design.
Conflict of interest
All authors declare that they have no conflicts of interest and no financial ties related directly or indirectly to the subject of this manuscript.
Citation Diversity Statement
Recent studies have shown women and minority scholars have been under-cited relative to the proportion of publications in various scientific fields.2,5 Our group recognizes these biased citation practices are unacceptable. As such, we ensure our references are both appropriate given the scope of this work and is inclusive to all genders and races.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Associate Editor Jane Grande-Allen oversaw the review of this article.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Wong, E., Parvin Nejad, S., D’Costa, K.A. et al. Design of a Mechanobioreactor to Apply Anisotropic, Biaxial Strain to Large Thin Biomaterials for Tissue Engineered Heart Valve Applications. Ann Biomed Eng 50, 1073–1089 (2022). https://doi.org/10.1007/s10439-022-02984-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-022-02984-3