Skip to main content

Advertisement

Log in

Design of a Mechanobioreactor to Apply Anisotropic, Biaxial Strain to Large Thin Biomaterials for Tissue Engineered Heart Valve Applications

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Repair and replacement solutions for congenitally diseased heart valves capable of post-surgery growth and adaptation have remained elusive. Tissue engineered heart valves (TEHVs) offer a potential biological solution that addresses the drawbacks of existing valve replacements. Typically, TEHVs are made from thin, fibrous biomaterials that either become cell populated in vitro or in situ. Often, TEHV designs poorly mimic the anisotropic mechanical properties of healthy native valves leading to inadequate biomechanical function. Mechanical conditioning of engineered tissues with anisotropic strain application can induce extracellular matrix remodelling to alter the anisotropic mechanical properties of a construct, but implementation has been limited to small-scale set-ups. To address this limitation for TEHV applications, we designed and built a mechanobioreactor capable of modulating biaxial strain anisotropy applied to large, thin, biomaterial sheets in vitro. The bioreactor can independently control two orthogonal stretch axes to modulate applied strain anisotropy on biomaterial sheets from 13 × 13 mm2 to 70 × 40 mm2. A design of experiments was performed using experimentally validated finite element (FE) models and demonstrated that biaxial strain was applied uniformly over a larger percentage of the cell seeded area for larger sheets (13 × 13 mm2: 58% of sheet area vs. 52 × 31 mm2: 86% of sheet area). Furthermore, bioreactor prototypes demonstrated that over 70% of the cell seeding area remained uniformly strained under different prescribed protocols: equibiaxial amplitudes between 5 to 40%, cyclic frequencies between 0.1 to 2.5 Hz and anisotropic strain ratios between 0:1 (constrained uniaxial) to 2:1. Lastly, proof-of-concept experiments were conducted where we applied equibiaxial (εx = εy = 8.75%) and anisotropic (εx = 12.5%, εy = 5%) strain protocols to cell-seeded, electrospun scaffolds. Cell nuclei and F-actin aligned to the vector-sum strain direction of each prescribed protocol (nuclei alignment: equibiaxial: 43.2° ± 1.8°, anisotropic: 17.5° ± 1.7°; p < 0.001). The abilities of this bioreactor to prescribe different strain amplitude, frequency and strain anisotropy protocols to cell-seeded scaffolds will enable future studies into the effects of anisotropic loading protocols on mechanically conditioned TEHVs and other engineered planar connective tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Barcik, J., M. Ernst, M. Balligand, C. E. Dlaska, L. Drenchev, S. Zeiter, D. R. Epari, and M. Windolf. Short-term bone healing response to mechanical stimulation—a case series conducted on sheep. Biomedicines. 9:988, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bertolero, M. A., J. D. Dworkin, S. U. David, C. López Lloreda, P. Srivastava, J. Stiso, D. Zhou, K. Dzirasa, D. A. Fair, A. N. Kaczkurkin, B. Jones Marlin, D. Shohamy, L. Q. Uddin, P. Zurn, and D. S. Bassett. Racial and ethnic imbalance in neuroscience reference lists and intersections with gender. bioRxiv. 2020. https://doi.org/10.1101/2020.10.12.336230%3e.

    Article  Google Scholar 

  3. Boonen, K. J. M., M. L. P. Langelaan, R. B. Polak, D. W. J. van der Schaft, F. P. T. Baaijens, and M. J. Post. Effects of a combined mechanical stimulation protocol: value for skeletal muscle tissue engineering. J. Biomech. 43:1514–1521, 2010.

    Article  PubMed  Google Scholar 

  4. Chen, K., A. Vigliotti, M. Bacca, R. M. McMeeking, V. S. Deshpande, and J. W. Holmes. Role of boundary conditions in determining cell alignment in response to stretch. Proc. Natl. Acad. Sci. U.S.A. 115:986–991, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chesler, N. C., G. Barabino, S. N. Bhatia, and R. Richards-Kortum. The pipeline still leaks and more than you think: a status report on gender diversity in biomedical engineering. Ann. Biomed. Eng. 38:1928–1935, 2010.

    Article  PubMed  Google Scholar 

  6. Chester, A. H., and K. J. Grande-Allen. Which biological properties of heart valves are relevant to tissue engineering? Front. Cardiovasc. Med. 7:63, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chong, J. E., J. P. Santerre, and R. A. Kandel. Generation of an in vitro model of the outer annulus fibrosus–cartilage interface. JOR Spine. 3:1–11, 2020.

    Article  Google Scholar 

  8. Coyan, G. N., L. da Mota Silveira-Filho, Y. Matsumura, S. K. Luketich, W. Katz, V. Badhwar, W. R. Wagner, and A. D’Amore. Acute in vivo functional assessment of a biodegradable stentless elastomeric tricuspid valve. J. Cardiovasc. Transl. Res. 13:796–805, 2020.

    Article  PubMed  Google Scholar 

  9. Dijkman, P. E., E. S. Fioretta, L. Frese, F. S. Pasqualini, and S. P. Hoerstrup. Heart valve replacements with regenerative capacity. Transfus. Med. Hemotherapy. 43:282–290, 2016.

    Article  Google Scholar 

  10. Eilaghi, A., J. G. Flanagan, G. W. Brodland, and C. R. Ethier. Strain uniformity in biaxial specimens is highly sensitive to attachment details. J. Biomech. Eng.131:091003, 2009.

    Article  PubMed  Google Scholar 

  11. Emmert, M. Y., B. A. Schmitt, S. Loerakker, B. Sanders, H. Spriestersbach, E. S. Fioretta, L. Bruder, K. Brakmann, S. E. Motta, V. Lintas, P. E. Dijkman, L. Frese, F. Berger, F. P. T. Baaijens, and S. P. Hoerstrup. Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Sci. Transl. Med. 10:eaan4587, 2018.

    Article  PubMed  CAS  Google Scholar 

  12. Fioretta, E. S., S. E. Motta, V. Lintas, S. Loerakker, K. K. Parker, F. P. T. Baaijens, V. Falk, S. P. Hoerstrup, and M. Y. Emmert. Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nat. Rev. Cardiol. 18:92–116, 2021.

    Article  PubMed  Google Scholar 

  13. Ghazanfari, S., A. Driessen-Mol, C. V. C. Bouten, and F. P. T. Baaijens. Modulation of collagen fiber orientation by strain-controlled enzymatic degradation. Acta Biomater. 35:118–126, 2016.

    Article  CAS  PubMed  Google Scholar 

  14. Gould, R. A., K. Chin, T. P. Santisakultarm, A. Dropkin, J. M. Richards, C. B. Schaffer, and J. T. Butcher. Cyclic strain anisotropy regulates valvular interstitial cell phenotype and tissue remodeling in three-dimensional culture. Acta Biomater. 8:1710–1719, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He, S., C. Liu, X. Li, S. Ma, B. Huo, and B. Ji. Dissecting collective cell behavior in polarization and alignment on micropatterned substrates. Biophys. J. 109:489–500, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hinton, R. B., and K. E. Yutzey. Heart valve structure and function in development and disease. Annu. Rev. Physiol. 73:29–46, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hochleitner, G., F. Chen, C. Blum, P. D. Dalton, B. Amsden, and J. Groll. Melt electrowriting below the critical translation speed to fabricate crimped elastomer scaffolds with non-linear extension behaviour mimicking that of ligaments and tendons. Acta Biomater. 72:110–120, 2018.

    Article  CAS  PubMed  Google Scholar 

  18. Hu, J., J. D. Humphrey, and A. T. Yeh. Characterization of engineered tissue development under biaxial stretch using nonlinear optical microscopy. Tissue Eng. Part A. 15:1553–1564, 2009.

    Article  CAS  PubMed  Google Scholar 

  19. Huang, C., K. Miyazaki, S. Akaishi, A. Watanabe, H. Hyakusoku, and R. Ogawa. Biological effects of cellular stretch on human dermal fibroblasts. J. Plast. Reconstr. Aesthetic Surg. 66:e351–e361, 2013.

    Article  Google Scholar 

  20. Iwasaki, K., K. Kojima, S. Kodama, A. C. Paz, M. Chambers, M. Umezu, and C. A. Vacanti. Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor. Circulation. 118:52–57, 2008.

    Article  CAS  Google Scholar 

  21. Jana, S., A. Lerman, and R. D. Simari. In vitro model of a fibrosa layer of a heart valve. ACS Appl. Mater. Interfaces. 7:20012–20020, 2015.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, M. K. M., M. J. Burns, M. E. Serjeant, and C. A. Séguin. The mechano-response of murine annulus fibrosus cells to cyclic tensile strain is frequency dependent. JOR SPINE. 3:1–19, 2020.

    Article  Google Scholar 

  23. Kluin, J., H. Talacua, A. I. P. M. Smits, M. Y. Emmert, M. C. P. Brugmans, E. S. Fioretta, P. E. Dijkman, S. H. M. Söntjens, R. Duijvelshoff, S. Dekker, M. W. J. T. Janssen-van den Broek, V. Lintas, A. Vink, S. P. Hoerstrup, H. M. Janssen, P. Y. W. Dankers, F. P. T. Baaijens, and C. V. C. Bouten. In situ heart valve tissue engineering using a bioresorbable elastomeric implant—from material design to 12 months follow-up in sheep. Biomaterials. 125:101–117, 2017.

    Article  CAS  PubMed  Google Scholar 

  24. Lei, Y., S. Masjedi, and Z. Ferdous. A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor. J. Mech. Behav. Biomed. Mater. 75:351–358, 2017.

    Article  CAS  PubMed  Google Scholar 

  25. Liu, C., C. Zhu, J. Li, P. Zhou, M. Chen, H. Yang, and B. Li. The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells. Bone Res. 3:15012, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu, H., J. F. Usprech, P. K. Parameshwar, Y. Sun, and C. A. Simmons. Combinatorial screen of dynamic mechanical stimuli for predictive control of MSC mechano-responsiveness. Sci. Adv. 2021. https://doi.org/10.1126/sciadv.abe7204.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Malladi, S., D. Miranda-Nieves, L. Leng, S. J. Grainger, C. Tarabanis, A. P. Nesmith, R. Kosaraju, C. A. Haller, K. K. Parker, E. L. Chaikof, and A. Günther. Continuous formation of ultrathin, strong collagen sheets with tunable anisotropy and compaction. ACS Biomater. Sci. Eng. 6:4236–4246, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. May, L. E., S. A. Scholtz, R. Suminski, and K. M. Gustafson. Aerobic exercise during pregnancy influences infant heart rate variability at one month of age. Early Hum. Dev. 90:33–38, 2014.

    Article  PubMed  Google Scholar 

  29. Metzler, S. A., C. S. Digesu, J. I. Howard, S. D. F. To, and J. N. Warnock. Live en face imaging of aortic valve leaflets under mechanical stress. Biomech. Model. Mechanobiol. 11:355–361, 2012.

    Article  PubMed  Google Scholar 

  30. Mol, A., N. J. B. Driessen, M. C. M. Rutten, S. P. Hoerstrup, C. V. C. Bouten, and F. P. T. Baaijens. Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach. Ann. Biomed. Eng. 33:1778–1788, 2005.

    Article  PubMed  Google Scholar 

  31. Oomen, P. J. A., S. Loerakker, D. Van Geemen, J. Neggers, M. J. T. H. Goumans, A. J. Van Den Bogaerdt, A. J. J. C. Bogers, C. V. C. Bouten, and F. P. T. Baaijens. Age-dependent changes of stress and strain in the human heart valve and their relation with collagen remodeling. Acta Biomater. 29:161–169, 2016.

    Article  CAS  PubMed  Google Scholar 

  32. Pennisi, C. P., C. G. Olesen, M. de Zee, J. Rasmussen, and V. Zachar. Uniaxial cyclic strain drives assembly and differentiation of skeletal myocytes. Tissue Eng. Part A. 17:2543–2550, 2011.

    Article  PubMed  Google Scholar 

  33. Picu, R. C., S. Deogekar, and M. R. Islam. Poisson’s contraction and fiber kinematics in tissue: insight from collagen network simulations. J. Biomech. Eng. 140:1–12, 2018.

    Article  Google Scholar 

  34. Puperi, D. S., A. Kishan, Z. E. Punske, Y. Wu, E. Cosgriff-Hernandez, J. L. West, and K. J. Grande-Allen. Electrospun polyurethane and hydrogel composite scaffolds as biomechanical mimics for aortic valve tissue engineering. ACS Biomater. Sci. Eng. 2:1546–1558, 2016.

    Article  CAS  PubMed  Google Scholar 

  35. Rouze, N. C., M. H. Wang, M. L. Palmeri, and K. R. Nightingale. Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium. J. Biomech. 46:2761–2768, 2013.

    Article  PubMed  Google Scholar 

  36. Sun, W., M. S. Sacks, and M. J. Scott. Effects of boundary conditions on the estimation of the planar biaxial mechanical properties of soft tissues. J. Biomech. Eng. 127:709, 2005.

    Article  PubMed  Google Scholar 

  37. Syedain, Z. H., B. Haynie, S. L. Johnson, M. Lahti, J. Berry, J. P. Carney, J. Li, R. C. Hill, K. C. Hansen, G. Thrivikraman, R. Bianco, and R. T. Tranquillo. Pediatric tri-tube valved conduits made from fibroblast-produced extracellular matrix evaluated over 52 weeks in growing lambs. Sci. Transl. Med. 13:eabb7225, 2021.

    Article  CAS  PubMed  Google Scholar 

  38. Syedain, Z. H., and R. T. Tranquillo. Controlled cyclic stretch bioreactor for tissue-engineered heart valves. Biomaterials. 30:4078–4084, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tambe, D. T., C. Corey Hardin, T. E. Angelini, K. Rajendran, C. Y. Park, X. Serra-Picamal, E. H. Zhou, M. H. Zaman, J. P. Butler, D. A. Weitz, J. J. Fredberg, and X. Trepat. Collective cell guidance by cooperative intercellular forces. Nat. Mater. 10:469–475, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tang, Y. W., R. S. Labow, and J. P. Santerre. Enzyme-induced biodegradation of polycarbonate-polyurethanes: dependence on hard-segment chemistry. J. Biomed. Mater. Res. 57:597–611, 2001.

    Article  CAS  PubMed  Google Scholar 

  41. Thomopoulos, S., G. M. Fomovsky, P. L. Chandran, and J. W. Holmes. Collagen fiber alignment does not explain mechanical anisotropy in fibroblast populated collagen gels. J. Biomech. Eng. 129:642–650, 2007.

    Article  PubMed  Google Scholar 

  42. Thrivikraman, G., A. Jagiełło, V. K. Lai, S. L. Johnson, M. Keating, A. Nelson, B. Schultz, C. M. Wang, A. J. Levine, E. L. Botvinick, and R. T. Tranquillo. Cell contact guidance via sensing anisotropy of network mechanical resistance. Proc. Natl. Acad. Sci. U.S.A.118:e2024942118, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tremblay, D., C. M. Cuerrier, L. Andrzejewski, E. R. O’Brien, and A. E. Pelling. A novel stretching platform for applications in cell and tissue mechanobiology. J. Vis. Exp. 2014. https://doi.org/10.3791/51454.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Van Geemen, D., A. L. F. Soares, P. J. A. Oomen, A. Driessen-Mol, M. W. J. T. Janssen-Van Den-Broek, A. J. Van Den Bogaerdt, A. J. J. C. Bogers, M. J. T. H. Goumans, F. P. T. Baaijens, and C. V. C. Bouten. Age-dependent changes in geometry, tissue composition and mechanical properties of fetal to adult cryopreserved human heart valves. PLoS ONE. 11:e0149020, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Venkataraman, L., C. A. Bashur, and A. Ramamurthi. Impact of cyclic stretch on induced elastogenesis within collagenous conduits. Tissue Eng. Part A. 20:1403–1415, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wahlsten, A., D. Rütsche, M. Nanni, C. Giampietro, T. Biedermann, E. Reichmann, and E. Mazza. Mechanical stimulation induces rapid fibroblast proliferation and accelerates the early maturation of human skin substitutes. Biomaterials.273:120779, 2021.

    Article  CAS  PubMed  Google Scholar 

  47. Wobbrock, J. O., L. Findlater, D. Gergle, and J. J. Higgins. The Aligned Rank Transform for nonparametric factorial analyses using only ANOVA procedures. In CHI ‘11: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2011. https://doi.org/10.1145/1978942.1978963.

  48. Wolf, S., P. Augat, K. Eckert-Hübner, A. Laule, G. D. Krischak, and L. E. Claes. Effects of high-frequency, low-magnitude mechanical stimulus on bone healing. Clin. Orthop. Relat. Res. 385:192–198, 2001.

    Article  Google Scholar 

  49. Yang, L., R. A. Kandel, G. Chang, and J. P. Santerre. Polar surface chemistry of nanofibrous polyurethane scaffold affects annulus fibrosus cell attachment and early matrix accumulation. J. Biomed. Mater. Res. Part A 91A:1089–1099, 2009.

    Article  CAS  Google Scholar 

  50. Zhang, W., Y. Feng, C.-H. Lee, K. L. Billiar, and M. S. Sacks. A generalized method for the analysis of planar biaxial mechanical data using tethered testing configurations. J. Biomech. Eng. 137:064501, 2015.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Canadian Institute of Health Research/National Sciences and Engineering Research Council (NSERC) Collaborative Health Research Project (CPG-151962/ CHRPJ 508364-17) and seed funding from the Translational Biology and Engineering Program in the Ted Rogers Center for Heart Research. E.W was funded by an NSERC Canada Graduate Scholarships-Master’s award; an NSERC Postgraduate Scholarship-Doctorate award, an NSERC CONNECT! Collaborative Research & Training Experience program award; an Ontario Graduate Scholarship; and a Milligan Graduate Fellowship through the Department of Mechanical and Industrial Engineering at the University of Toronto. We would like to further acknowledge Dr. Cheryle A. Séguin and Dr. Mark M. K. Kim (Department of Physiology and Pharmacology, Western University, London ON) for their feedback on the bioreactor design.

Conflict of interest

All authors declare that they have no conflicts of interest and no financial ties related directly or indirectly to the subject of this manuscript.

Citation Diversity Statement

Recent studies have shown women and minority scholars have been under-cited relative to the proportion of publications in various scientific fields.2,5 Our group recognizes these biased citation practices are unacceptable. As such, we ensure our references are both appropriate given the scope of this work and is inclusive to all genders and races.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edwin Wong or Craig A. Simmons.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1871 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, E., Parvin Nejad, S., D’Costa, K.A. et al. Design of a Mechanobioreactor to Apply Anisotropic, Biaxial Strain to Large Thin Biomaterials for Tissue Engineered Heart Valve Applications. Ann Biomed Eng 50, 1073–1089 (2022). https://doi.org/10.1007/s10439-022-02984-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02984-3

Keywords

Navigation