Skip to main content
Log in

Aortic Dissection is Determined by Specific Shape and Hemodynamic Interactions

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to determine whether specific three-dimensional aortic shape features, extracted via statistical shape analysis (SSA), correlate with the development of thoracic ascending aortic dissection (TAAD) risk and associated aortic hemodynamics. Thirty-one patients followed prospectively with ascending thoracic aortic aneurysm (ATAA), who either did (12 patients) or did not (19 patients) develop TAAD, were included in the study, with aortic arch geometries extracted from computed tomographic angiography (CTA) imaging. Arch geometries were analyzed with SSA, and unsupervised and supervised (linked to dissection outcome) shape features were extracted with principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), respectively. We determined PLS-DA to be effective at separating dissection and no-dissection patients (\(p = 0.0010\)), with decreased tortuosity and more equal ascending and descending aortic diameters associated with higher dissection risk. In contrast, neither PCA nor traditional morphometric parameters (maximum diameter, tortuosity, or arch volume) were effective at separating dissection and no-dissection patients. The arch shapes associated with higher dissection probability were supported with hemodynamic insight. Computational fluid dynamics (CFD) simulations revealed a correlation between the PLS-DA shape features and wall shear stress (WSS), with higher maximum WSS in the ascending aorta associated with increased risk of dissection occurrence. Our work highlights the potential importance of incorporating higher dimensional geometric assessment of aortic arch anatomy in TAAD risk assessment, and in considering the interdependent influences of arch shape and hemodynamics as mechanistic contributors to TAAD occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Alastruey, J., N. Xiao, H. Fok, T. Schaeffter, and C. A. Figueroa. On the impact of modelling assumptions in multi-scale, subject-specific models of aortic haemodynamics. Journal of the Royal Society Interface 13(119):20160073, 2016.

  2. Antiga, L., M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. A. Steinman. An image-based modeling framework for patient-specific computational hemodynamics. Medical and Biological Engineering and Computing 46:1097–1112, 2008.

    Article  Google Scholar 

  3. Bäck, M., T. C. Gasser, J. B. Michel, and G. Caligiuri. Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovascular Research 99:232–241, 2013.

    Article  Google Scholar 

  4. Bône, A., M. Louis, B. Martin, and S. Durrleman. Deformetrica 4: An Open-Source Software for Statistical Shape Analysis. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11167. LNCS, pp. 3–13, 2018.

  5. Bruse, J. L., A. Khushnood, K. McLeod, G. Biglino, M. Sermesant, X. Pennec, A. M. Taylor, T. Y. Hsia, S. Schievano, A. M. Taylor, S. Khambadkone, S. Schievano, M. de Leval, T. Y. Hsia, E. Bove, A. Dorfman, G. H. Baker, A. Hlavacek, F. Migliavacca, G. Pennati, G. Dubini, A. Marsden, I. Vignon-Clementel, and R. Figliola. How successful is successful? Aortic arch shape after successful aortic coarctation repair correlates with left ventricular function. Journal of Thoracic and Cardiovascular Surgery 153:418–427, 2017.

    Article  Google Scholar 

  6. Bruse, J. L., K. McLeod, G. Biglino, H. N. Ntsinjana, C. Capelli, T. Y. Hsia, M. Sermesant, X. Pennec, A. M. Taylor, S. Schievano, A. Taylor, A. Giardini, S. Khambadkone, M. de Leval, E. Bove, A. Dorfman, G. H. Baker, A. Hlavacek, F. Migliavacca, G. Pennati, G. Dubini, A. Marsden, I. Vignon-Clementel, R. Figliola, and J. McGregor. A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data: Assessing arch morphology of repaired coarctation of the aorta. BMC Medical Imaging 16:1–19, 2016.

    Article  Google Scholar 

  7. Bruse, J. L., M. A. Zuluaga, A. Khushnood, K. McLeod, H. N. Ntsinjana, T. Y. Hsia, M. Sermesant, X. Pennec, A. M. Taylor, and S. Schievano. Detecting clinically meaningful shape clusters in medical image data: Metrics analysis for hierarchical clustering applied to healthy and pathological aortic arches. IEEE Transactions on Biomedical Engineering 64:2373–2383, 2017.

    Article  Google Scholar 

  8. Casciaro, M. E., D. Craiem, G. Chironi, S. Graf, L. Macron, E. Mousseaux, A. Simon, and R. L. Armentano. Identifying the principal modes of variation in human thoracic aorta morphology. Journal of Thoracic Imaging 29:224–232, 2014.

    Article  Google Scholar 

  9. Cheng, Z., F. P. Tan, C. V. Riga, C. D. Bicknell, M. S. Hamady, R. G. Gibbs, N. B. Wood, and X. Y. Xu. Analysis of flow patterns in a patient-specific aortic dissection model. Journal of Biomechanical Engineering 132:1–9, 2010.

    Article  Google Scholar 

  10. Chi, Q., Y. He, Y. Luan, K. Qin, and L. Mu. Numerical analysis of wall shear stress in ascending aorta before tearing in type A aortic dissection. Computers in Biology and Medicine 89:236–247, 2017.

    Article  Google Scholar 

  11. Coady, M. A., J. A. Rizzo, G. L. Hammond, G. S. Kopf, and J. A. Elefteriades. Surgical intervention criteria for thoracic aortic aneurysms: A study of growth rates and complications. Annals of Thoracic Surgery 67:1922–1926, 1999.

    Article  CAS  Google Scholar 

  12. Cosentino, F., G. M. Raffa, G. Gentile, V. Agnese, D. Bellavia, M. Pilato, and S. Pasta. Statistical shape analysis of ascending thoracic aortic aneurysm: Correlation between shape and biomechanical descriptors. Journal of Personalized Medicine 10:1–14, 2020.

    Article  Google Scholar 

  13. Emerel, L., J. Thunes, T. Kickliter, M. Billaud, J. A. Phillippi, D. A. Vorp, S. Maiti, and T. G. Gleason. Predissection-derived geometric and distensibility indices reveal increased peak longitudinal stress and stiffness in patients sustaining acute type A aortic dissection: Implications for predicting dissection. Journal of Thoracic and Cardiovascular Surgery 158:355–363, 2019.

    Article  Google Scholar 

  14. Frangi, A. F., Z. A. Taylor, and A. Gooya. Precision Imaging: more descriptive, predictive and integrative imaging. Medical Image Analysis 33:27–32, 2016.

    Article  Google Scholar 

  15. Hagan, P. G., C. A. Nienaber, E. M. Isselbacher, D. Bruckman, D. J. Karavite, P. L. Russman, A. Evangelista, R. Fattori, T. Suzuki, J. K. Oh, A. G. Moore, J. F. Malouf, L. A. Pape, C. Gaca, U. Sechtem, S. Lenferink, H. J. Deutsch, H. Diedrichs, J. Marcos y Robles, A. Llovet, D. Gilon, S. K. Das, W. F. Armstrong, G. M. Deeb, and K. A. Eagle. The International Registry of Acute Aortic Dissection (IRAD). JAMA 283:897, 2000.

  16. Jolliffee, I. Principal components analysis. In International Encyclopedia of Education. New York: Springer, pp. 374–377, 2010.

  17. Lale, P., U. Toprak, G. Yagız, T. Kaya, and S. A. Uyanık. Variations in the branching pattern of the aortic arch detected with computerized tomography angiography. Advances in Radiology 2014:1–6, 2014.

    Google Scholar 

  18. Liang, L., M. Liu, C. Martin, J. A. Elefteriades, and W. Sun. A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm. Biomechanics and Modeling in Mechanobiology 16:1519–1533, 2017.

    Article  Google Scholar 

  19. Lu, T. L. C., E. Rizzo, P. M. Marques-Vidal, L. K. Von Segesser, J. Dehmeshki, and S. D. Qanadli. Variability of ascending aorta diameter measurements as assessed with electrocardiography-gated multidetector computerized tomography and computer assisted diagnosis software. Interactive Cardiovascular and Thoracic Surgery 10:217–221, 2010.

    Article  Google Scholar 

  20. Marlevi, D., J. A. Sotelo, R. Grogan-Kaylor, Y. Ahmed, S. Uribe, H. J. Patel, E. R. Edelman, D. A. Nordsletten, and N. S. Burris. False lumen pressure estimation in type B aortic dissection using 4D flow cardiovascular magnetic resonance: comparisons with aortic growth. Journal of Cardiovascular Magnetic Resonance 23:1–13, 2021.

    Article  Google Scholar 

  21. Medrano-Gracia, P., B. R. Cowan, B. Ambale-Venkatesh, D. A. Bluemke, J. Eng, J. P. Finn, C. G. Fonseca, J. A. Lima, A. Suinesiaputra, and A. A. Young. Left ventricular shape variation in asymptomatic populations: The multi-ethnic study of atherosclerosis. Journal of Cardiovascular Magnetic Resonance 16:1–10, 2014.

    Article  Google Scholar 

  22. Pape, L. A., T. T. Tsai, E. M. Isselbacher, J. K. Oh, P. T. O’Gara, A. Evangelista, R. Fattori, G. Meinhardt, S. Trimarchi, E. Bossone, T. Suzuki, J. V. Cooper, J. B. Froehlich, C. A. Nienaber, and K. A. Eagle. Aortic diameter \(\ge 5.5\) cm is not a good predictor of type A aortic dissection: Observations from the International Registry of Acute Aortic Dissection (IRAD). Circulation 116:1120–1127, 2007.

  23. Rikhtegar Nezami, F., L. S. Athanasiou, J. M. Amrute, and E. R. Edelman. Vascular biology and microcirculation: Multilayer flow modulator enhances vital organ perfusion in patients with type b aortic dissection. American Journal of Physiology - Heart and Circulatory Physiology 315:H1182–H1193, 2018.

    Article  Google Scholar 

  24. Schnell, S., D. A. Smith, A. J. Barker, P. Entezari, A. R. Honarmand, M. L. Carr, S. C. Malaisrie, P. M. Mccarthy, J. Collins, J. C. Carr, and M. Markl. Altered aortic shape in bicuspid aortic valve relatives influences blood flow patterns. European Heart Journal Cardiovascular Imaging 17:1239–1247, 2016.

    Article  Google Scholar 

  25. Zhang, X., B. R. Cowan, D. A. Bluemke, J. P. Finn, C. G. Fonseca, A. H. Kadish, D. C. Lee, J. A. Lima, A. Suinesiaputra, A. A. Young, and P. Medrano-Gracia. Atlas-based quantification of cardiac remodeling due to myocardial infarction. PLoS ONE 9(10):e110243, 2014.

Download references

Acknowledgments

This work was supported by a grant from the National Heart Lung and Blood Institute of the National Institutes of Health: 2RO1 HL109132-06 (TGG).

Conflict of interest

There are no conflicts of interest for the work performed. TGG serves on a Medical Advisory Board for Abbott but receives no remumeration for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Gleason.

Additional information

Associate Editor Lakshmi Prasad Dasi oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Elazer R. Edelman and Thomas G. Gleason—Co-senior authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2740 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, J.G., Marlevi, D., Bruse, J.L. et al. Aortic Dissection is Determined by Specific Shape and Hemodynamic Interactions. Ann Biomed Eng 50, 1771–1786 (2022). https://doi.org/10.1007/s10439-022-02979-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02979-0

Keywords

Navigation