Skip to main content
Log in

Head Impact Exposure in Youth and Collegiate American Football

  • Concussions
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The relationship between head impact and subsequent brain injury for American football players is not well-defined, especially for youth. The objective of this study is to quantify and assess Head Impact Exposure (HIE) metrics among youth and collegiate football players. This multi-season study enrolled 639 unique athletes (354 collegiate; 285 youth, ages 9–14), recording 476,209 head impacts (367,337 collegiate; 108,872 youth) over 971 sessions (480 collegiate; 491 youth). Youth players experienced 43 and 65% fewer impacts per competition and practice, respectively, and lower impact magnitudes compared to collegiate players (95th percentile peak linear acceleration (PLA, g) competition: 45.6 vs 61.9; 95th percentile PLA practice: 42.6 vs 58.8; 95th percentile peak rotational acceleration (PRA, rad·s−2) competition: 2262 vs 4422; 95th percentile PRA practice: 2081 vs 4052; 95th percentile HITsp competition: 25.4 vs 32.8; 95th percentile HITsp practice: 23.9 vs 30.2). Impacts during competition were more frequent and of greater magnitude than during practice at both levels. Quantified comparisons of head impact frequency and magnitude between youth and collegiate athletes reveal HIE differences as a function of age, and expanded insight better informs the development of age-appropriate guidelines for helmet design, prevention measures, standardized testing, brain injury diagnosis, and recovery management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Alosco, M. L., A. B. Kasimis, J. M. Stamm, et al. Age of first exposure to American football and long-term neuropsychiatric and cognitive outcomes. Transl. Psychiatry.7(9):e1236, 2017. https://doi.org/10.1038/tp.2017.197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Askow, A. T., J. L. Erickson, and A. R. Jagim. Recent trends in youth concussions: a brief report. J. Prim. Care Commun. Health. 11:2150132720985058, 2020. https://doi.org/10.1177/2150132720985058.

    Article  Google Scholar 

  3. Baugh, C. M., and E. Kroshus. Concussion management in US college football: progress and pitfalls. Concussion. 2015. https://doi.org/10.2217/cnc.15.6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bellamkonda, S., S. J. Woodward, E. Campolettano, et al. Head impact exposure in practices correlates with exposure in games for youth football players. J. Appl. Biomech. 2018. https://doi.org/10.1123/jab.2017-0207.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brolinson, P. G., S. Manoogian, D. McNeely, M. Goforth, R. Greenwald, and S. Duma. Analysis of linear head accelerations from collegiate football impacts. Curr. Sports Med. Rep. 5(1):23–28, 2006.

    Article  PubMed  Google Scholar 

  6. Buzas, D., N. A. Jacobson, and L. G. Morawa. Concussions from 9 youth organized sports: results from NEISS hospitals over an 11-year time frame, 2002–2012. Orthop. J. Sports Med. 2014. https://doi.org/10.1177/2325967114528460.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Buzzini, S. R. R., and K. M. Guskiewicz. Sport-related concussion in the young athlete. Curr. Opin. Pediatr. 18(4):376–382, 2006. https://doi.org/10.1097/01.mop.0000236385.26284.ec.

    Article  PubMed  Google Scholar 

  8. Campolettano, E. T., R. A. Gellner, E. P. Smith, et al. Development of a concussion risk function for a youth population using head linear and rotational acceleration. Ann. Biomed. Eng. 48(1):92–103, 2020. https://doi.org/10.1007/s10439-019-02382-2.

    Article  PubMed  Google Scholar 

  9. Campolettano, E. T., S. Rowson, and S. M. Duma. Drill-specific head impact exposure in youth football practice. J. Neurosurg. Pediatr. 18(5):536–541, 2016. https://doi.org/10.3171/2016.5.PEDS1696.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chu, J. J., J. G. Beckwith, J. J. Crisco, and R. M. Greenwald. A novel algorithm to measure linear and rotational head acceleration using single-axis accelerometers. J. Biomech. 39:S534, 2006. https://doi.org/10.1016/S0021-9290(06)85195-X.

    Article  Google Scholar 

  11. Cobb, B. R., J. E. Urban, E. M. Davenport, et al. Head impact exposure in youth football: elementary school ages 9–12 years and the effect of practice structure. Ann. Biomed. Eng. 41(12):2463–2473, 2013. https://doi.org/10.1007/s10439-013-0867-6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Council on Sports Medicine And Fitness. Tackling in youth football. Pediatrics. 136(5):e1419–e1430, 2015. https://doi.org/10.1542/peds.2015-3282.

    Article  Google Scholar 

  13. Crisco, J. J., J. J. Chu, and R. M. Greenwald. An algorithm for estimating acceleration magnitude and impact location using multiple nonorthogonal single-axis accelerometers. J. Biomech. Eng. 126(6):849–854, 2004. https://doi.org/10.1115/1.1824135.

    Article  PubMed  Google Scholar 

  14. Crisco, J. J., R. Fiore, J. G. Beckwith, et al. Frequency and location of head impact exposures in individual collegiate football players. J. Athletic Train. 45(6):549–559, 2010. https://doi.org/10.4085/1062-6050-45.6.549.

    Article  Google Scholar 

  15. Crisco, J. J., B. J. Wilcox, J. G. Beckwith, et al. Head impact exposure in collegiate football players. J Biomech. 44(15):2673–2678, 2011. https://doi.org/10.1016/j.jbiomech.2011.08.003.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Crisco, J. J., B. J. Wilcox, J. T. Machan, et al. Magnitude of head impact exposures in individual collegiate football players. J. Appl. Biomech. 28(2):174–183, 2012. https://doi.org/10.1123/jab.28.2.174.

    Article  PubMed  Google Scholar 

  17. Daniel, R. W., S. Rowson, and S. M. Duma. Head impact exposure in youth football. Ann. Biomed. Eng. 40(4):976–981, 2012. https://doi.org/10.1007/s10439-012-0530-7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Duma, S. M., S. J. Manoogian, W. R. Bussone, et al. Analysis of real-time head accelerations in collegiate football players. Clin. J. Sport Med. 15(1):3–8, 2005.

    Article  PubMed  Google Scholar 

  19. Funk, J. R., S. M. Duma, S. J. Manoogian, and S. Rowson. Biomechanical risk estimates for mild traumatic brain injury. Annu. Proc. Assoc. Adv. Automot. Med. 51:343–361, 2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Funk, J. R., S. Rowson, R. W. Daniel, and S. M. Duma. Validation of concussion risk curves for collegiate football players derived from HITS data. Ann. Biomed. Eng. 40(1):79–89, 2012. https://doi.org/10.1007/s10439-011-0400-8.

    Article  PubMed  Google Scholar 

  21. Gadd, C., Use of a weighted-impulse criterion for estimating injury hazard. SAE. In: 10th Stapp Conference (SAE Paper# 660793): pp. 164–174.

  22. Gennarelli, T. A, Thibault, L. E, Ommaya, A. K., Pathophysiologic Responses to rotational and translational accelerations of the head. In: 1972:296–308. doi:https://doi.org/10.4271/720970

  23. Greenwald, R. M., Gwin, J. T., Chu, J. J., Crisco, J. J., Head impact severity measures for evaluating mild traumatic brain injury risk exposure. Neurosurgery. 2008;62(4):789–798; discussion 798. doi:https://doi.org/10.1227/01.neu.0000318162.67472.ad

  24. Guskiewicz, K. M., and T. C. V. McLeod. Pediatric sports-related concussion. PM&R. 3(4):353–364, 2011. https://doi.org/10.1016/j.pmrj.2010.12.006.

    Article  Google Scholar 

  25. Guskiewicz, K. M., and J. P. Mihalik. Biomechanics of sport concussion: quest for the elusive injury threshold. Exercise Sport Sci. Rev. 39(1):4–11, 2011. https://doi.org/10.1097/JES.0b013e318201f53e.

    Article  Google Scholar 

  26. Harmon, K. G., J. R. Clugston, K. Dec, et al. American Medical Society for Sports Medicine position statement on concussion in sport. Br. J. Sports Med. 53(4):213–225, 2019. https://doi.org/10.1136/bjsports-2018-100338.

    Article  PubMed  Google Scholar 

  27. Hirst, R. B., A. L. Haas, A. M. Teague, L. T. Whittington, and E. Taylor. Bell ringers: factors related to concussive events in children playing tackle football. J. Pediatr. Health Care. 33(1):14–25, 2019. https://doi.org/10.1016/j.pedhc.2018.05.009.

    Article  PubMed  Google Scholar 

  28. Hodgson, V. R, Thomas, L. M., Prasad, P., Testing the validity and limitations of the severity index. In: 1970. doi:https://doi.org/10.4271/700901

  29. Kelley, M. E., M. A. Espeland, W. C. Flood, et al. Comparison of head impact exposure in practice drills among multiple youth football teams. J Neurosurg. Pediatr. 23(3):381–389, 2018. https://doi.org/10.3171/2018.9.PEDS18314.

    Article  PubMed  Google Scholar 

  30. Kerr, Z. Y., C. L. Collins, J. P. Mihalik, S. W. Marshall, K. M. Guskiewicz, and R. D. Comstock. Impact locations and concussion outcomes in high school football player-to-player collisions. Pediatrics. 134(3):489–496, 2014. https://doi.org/10.1542/peds.2014-0770.

    Article  PubMed  Google Scholar 

  31. King, A. I., Yang, K. H., Zhang, L., Hardy, W., Viano, D. C., Is head injury caused by linear or angular acceleration? Published online 2003:12.

  32. Kirkwood, M. W., K. O. Yeates, and P. E. Wilson. Pediatric sport-related concussion: a review of the clinical management of an oft-neglected population. Pediatrics. 117(4):1359–1371, 2006. https://doi.org/10.1542/peds.2005-0994.

    Article  PubMed  Google Scholar 

  33. Kontos, A. P., R. J. Elbin, V. C. Fazio-Sumrock, et al. Incidence of sports-related concussion among youth football players aged 8–12 years. J. Pediatr. 163(3):717–720, 2013. https://doi.org/10.1016/j.jpeds.2013.04.011.

    Article  PubMed  Google Scholar 

  34. Lynall, R. C., K. R. Campbell, E. B. Wasserman, T. P. Dompier, and Z. Y. Kerr. Concussion mechanisms and activities in youth, high school, and college football. J. Neurotrauma. 34(19):2684–2690, 2017. https://doi.org/10.1089/neu.2017.5032.

    Article  PubMed  Google Scholar 

  35. Manoogian, S., D. McNeely, S. Duma, G. Brolinson, and R. Greenwald. Head acceleration is less than 10 percent of helmet acceleration in football impacts. Biomed. Sci Instrum. 42:383–388, 2006.

    PubMed  Google Scholar 

  36. McAllister, T., and M. McCrea. Long-term cognitive and neuropsychiatric consequences of repetitive concussion and head-impact exposure. J. Athletic Train. 52(3):309–317, 2017. https://doi.org/10.4085/1062-6050-52.1.14.

    Article  Google Scholar 

  37. McCrea, M., and K. Guskiewicz. Evidence-based management of sport-related concussion. Concussion. 28:112–127, 2014. https://doi.org/10.1159/000358769.

    Article  Google Scholar 

  38. Meaney, D. F., and D. H. Smith. Biomechanics of concussion. Clin. Sports Med. 30(1):19–31, 2011. https://doi.org/10.1016/j.csm.2010.08.009.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Munce, T. A., J. C. Dorman, P. A. Thompson, V. D. Valentine, and M. F. Bergeron. Head impact exposure and neurologic function of youth football players. Med. Sci. Sports Exercise. 47(8):1567–1576, 2015. https://doi.org/10.1249/MSS.0000000000000591.

    Article  Google Scholar 

  40. NCAA Publications. 2020 NCAA football rules and interpretations. Accessed January 14, 2021. https://www.ncaapublications.com/p-4602-2020-ncaa-football-rules-and-interpretations.aspx.

  41. Pellman, E. J., D. C. Viano, A. M. Tucker, and I. R. Casson. Concussion in professional football: location and direction of helmet impacts: part 2. Neurosurgery. 53(6):1328–1341, 2003. https://doi.org/10.1227/01.NEU.0000093499.20604.21.

    Article  PubMed  Google Scholar 

  42. Pfister, T., K. Pfister, B. Hagel, W. A. Ghali, and P. E. Ronksley. The incidence of concussion in youth sports: a systematic review and meta-analysis. Br. J. Sports Med. 50(5):292–297, 2016. https://doi.org/10.1136/bjsports-2015-094978.

    Article  PubMed  Google Scholar 

  43. Rowson, S., and S. M. Duma. Brain injury prediction: assessing the combined probability of concussion using linear and rotational head acceleration. Ann. Biomed. Eng. 41(5):873–882, 2013. https://doi.org/10.1007/s10439-012-0731-0.

    Article  PubMed  PubMed Central  Google Scholar 

  44. SAS Institute Inc. Base SAS® 94 Procedures Guide. Cary: SAS Institute Inc, 2013.

    Google Scholar 

  45. Sports-related concussions in youth. improving the science, changing the culture. Mil. Med. 180(2):123–125, 2015. https://doi.org/10.7205/MILMED-D-14-00516.

    Article  Google Scholar 

  46. Stemper, B. D., A. S. Shah, J. Harezlak, et al. Comparison of head impact exposure between concussed football athletes and matched controls: evidence for a possible second mechanism of sport-related concussion. Ann. Biomed. Eng. 47(10):2057–2072, 2019. https://doi.org/10.1007/s10439-018-02136-6.

    Article  PubMed  Google Scholar 

  47. Stroup, W. W., G. A. Milliken, E. A. Claassen, and R. D. Wolfinger. SAS® for Mixed Models: Introduction and Basic Applications. Cary: SAS Institute Inc., 2018.

    Google Scholar 

  48. Tierney, G. J., C. Kuo, L. Wu, D. Weaving, and D. Camarillo. Analysis of head acceleration events in collegiate-level American football: a combination of qualitative video analysis and in-vivo head kinematic measurement. J. Biomech.110:109969, 2020. https://doi.org/10.1016/j.jbiomech.2020.109969.

    Article  PubMed  Google Scholar 

  49. USA Football., The football development model. Accessed January 14, 2021. https://fdm.usafootball.com/

  50. Yeargin, S. W., P. Kingsley, J. M. Mensch, J. P. Mihalik, and E. V. Monsma. Anthropometrics and maturity status: a preliminary study of youth football head impact biomechanics. Int. J. Psychophysiol. 132:87–92, 2018.

    Article  PubMed  Google Scholar 

  51. Young, T. J., R. W. Daniel, S. Rowson, and S. M. Duma. Head impact exposure in youth football: elementary school ages 7–8 years and the effect of returning players. Clin. J. Sport Med. 24(5):416–421, 2014. https://doi.org/10.1097/JSM.0000000000000055.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project is possible thanks to the previous efforts of Dr. Stephen Duma and his team at Virginia Tech, Dr. Joel Stitzel and his team at Wake Forest University, Dr. Rick Greenwald and his team at Simbex, and all those involved throughout the years from the Crisco Lab.

Funding

Research reported in this publication was supported by the National Institutes of Health under Award Numbers NIH R01NS094410, R01HD048638, and RO1NS055020.

Conflict of interest

HIT System technology was developed in part under NIH R44HD40743 and research and development support from Riddell Inc (Elyria, OH). J.G.B., R.M.G., and J.J.C. have a financial interest in the instruments (HIT System, Sideline Response System; Riddell Inc) that were used to collect the biomechanical data reported in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph J. Crisco.

Additional information

Associate Editor Stefan M.Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 364 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, G.B., Smith, E.P., Duma, S.M. et al. Head Impact Exposure in Youth and Collegiate American Football. Ann Biomed Eng 50, 1488–1497 (2022). https://doi.org/10.1007/s10439-022-02974-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02974-5

Keywords

Navigation