Skip to main content
Log in

Change in Lumbar Muscle Size and Composition on MRI with Long-Duration Spaceflight

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Prolonged microgravity results in muscle atrophy, especially among the anti-gravity spinal muscles. How individual paravertebral muscle groups change in size and composition with spaceflight needs further exploration. This study investigates lumbar spine musculature changes among six crewmembers on long-duration space missions using non-invasive measurement of muscle changes with magnetic resonance imaging (MRI). Pre- and post-flight lumbar images were analyzed for changes in cross-sectional area, volume, and fat infiltration of the psoas (PS), quadratus lumborum (QL), and paraspinal [erector spinae and multifidus (ES + MF)] muscles using mixed models. Crewmembers used onboard exercise equipment, including a cycle ergometer (CEVIS), treadmill (T2/COLBERT), and the advanced resistive exercise device (ARED). Correlations were used to assess muscle changes related to exercise modality. There was substantial variability in muscle changes across crewmembers but collectively a significant decrease in paraspinal area (− 9.0 ± 4.8%, p = 0.04) and a significant increase in QL fat infiltration (7.3 ± 4.1%, p = 0.05). More CEVIS time may have protected against PS volume loss (p = 0.05) and PS fat infiltration (p < 0.01), and more ARED usage may have protected against ES + MF volume loss (p = 0.05). Crewmembers using modern onboard exercise equipment may be less susceptible to muscle changes. However, variability between crewmembers and muscle size and quality losses suggest additional research is needed to ensure in-flight countermeasures preserve muscle health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bailey, J. F., S. L. Miller, K. Khieu, C. W. O’Neill, R. M. Healey, D. G. Coughlin, J. V. Sayson, D. G. Chang, A. R. Hargens, and J. C. Lotz. From the international space station to the clinic: how prolonged unloading may disrupt lumbar spine stability. Spine J. 18:7–14, 2018.

    Article  Google Scholar 

  2. Burkhart, K., B. Allaire, and M. L. Bouxsein. Negative effects of long-duration spaceflight on paraspinal muscle morphology. Spine (Phila Pa 1976). 44:879–886, 2019.

    Article  Google Scholar 

  3. Chang, D. G., R. M. Healey, A. J. Snyder, J. V. Sayson, B. R. Macias, D. G. Coughlin, J. F. Bailey, S. E. Parazynski, J. C. Lotz, and A. R. Hargens. Lumbar spine paraspinal muscle and intervertebral disc height changes in astronauts after long-duration spaceflight on the international space station. Spine (Phila Pa 1976). 41:1917–1924, 2016.

    Article  Google Scholar 

  4. Clark, D. R., M. I. Lambert, and A. M. Hunter. Muscle activation in the loaded free barbell squat: a brief review. J. Strength Cond. Res. 26:1169–1178, 2012.

    Article  Google Scholar 

  5. D’Hooge, R., B. Cagnie, G. Crombez, G. Vanderstraeten, M. Dolphens, and L. Danneels. Increased intramuscular fatty infiltration without differences in lumbar muscle cross-sectional area during remission of unilateral recurrent low back pain. Man Ther. 17:584–588, 2012.

    Article  Google Scholar 

  6. Elliott, J., G. Galloway, G. Jull, J. Noteboom, C. Centeno, and W. Gibbon. Magnetic resonance imaging analysis of the upper cervical spine extensor musculature in an asymptomatic cohort: an index of fat within muscle. Clin. Radiol. 60:355–363, 2005.

    Article  CAS  Google Scholar 

  7. English, K. L., S. M. C. Lee, J. A. Loehr, R. J. Ploutz-Snyder, and L. L. Ploutz-Snyder. Isokinetic strength changes following long-duration spaceflight on the ISS. Aerosp. Med. Hum. Perform. 86:A68–A77, 2015.

    Article  Google Scholar 

  8. Fenwick, C. M., S. H. Brown, and S. M. McGill. Comparison of different rowing exercises: trunk muscle activation and lumbar spine motion, load, and stiffness. J. Strength Cond. Res. 23:1408–1417, 2009.

    Article  Google Scholar 

  9. Garcia, K. M., M. F. Harrison, A. E. Sargsyan, D. Ebert, and S. A. Dulchavsky. Real-time ultrasound assessment of astronaut spinal anatomy and disorders on the international space station. J. Ultrasound Med. 37:987–999, 2018.

    Article  Google Scholar 

  10. Gerber, C., A. G. Schneeberger, H. Hoppeler, and D. C. Meyer. Correlation of atrophy and fatty infiltration on strength and integrity of rotator cuff repairs: a study in thirteen patients. J. Shoulder Elb. Surg. 16:691–696, 2007.

    Article  Google Scholar 

  11. Greene, K. A., S. S. Withers, L. Lenchik, J. A. Tooze, and A. A. Weaver. Trunk skeletal muscle changes on CT with long-duration spaceflight. Ann. Biomed. Eng. 49:1257–1266, 2021.

    Article  Google Scholar 

  12. Harrison, M. F., K. M. Garcia, A. E. Sargsyan, D. Ebert, R. F. Riascos-Castaneda, and S. A. Dulchavsky. Preflight, in-flight, and postflight imaging of the cervical and lumbar spine in astronauts. Aerosp. Med. Hum. Perform. 89:32–40, 2018.

    Article  Google Scholar 

  13. Hides, J. A., G. Lambrecht, W. R. Stanton, and V. Damann. Changes in multifidus and abdominal muscle size in response to microgravity: possible implications for low back pain research. Eur. Spine J. 25:175–182, 2016.

    Article  Google Scholar 

  14. Juker, D., S. McGill, and P. Kropf. Quantitative intramuscular myoelectric activity of lumbar portions of psoas and the abdominal wall during cycling. J. Appl. Biomech. 14:428, 1998.

    Article  Google Scholar 

  15. Kerstman, E. L., R. A. Scheuring, M. G. Barnes, T. B. DeKorse, and L. G. Saile. Space adaptation back pain: a retrospective study. Aviat. Space Environ. Med. 83:2–7, 2012.

    Article  Google Scholar 

  16. Kjaer, P., T. Bendix, J. S. Sorensen, L. Korsholm, and C. Leboeuf-Yde. Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain? BMC Med. 5:2, 2007.

    Article  Google Scholar 

  17. Koo, T. K., and M. Y. Li. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15:155–163, 2016.

    Article  Google Scholar 

  18. Lang, T., J. A. Cauley, F. Tylavsky, D. Bauer, S. Cummings, and T. B. Harris. Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J. Bone Miner. Res. 25:513–519, 2010.

    Article  Google Scholar 

  19. Lang, T., A. LeBlanc, H. Evans, Y. Lu, H. Genant, and A. Yu. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J. Bone Miner. Res. 19:1006–1012, 2004.

    Article  Google Scholar 

  20. LeBlanc, A., C. Lin, L. Shackelford, V. Sinitsyn, H. Evans, O. Belichenko, B. Schenkman, I. Kozlovskaya, V. Oganov, A. Bakulin, T. Hedrick, and D. Feeback. Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J. Appl. Physiol. (1985). 89:2158–2164, 2000.

    Article  CAS  Google Scholar 

  21. Lee, S. M. C., R. A. Scheuring, M. E. Guilliams, and E. L. Kerstman. Physical performance, countermeasures, and postflight reconditioning. In: Principles of Clinical Medicine for Space Flight, edited by M. R. Barratt, E. S. Baker, and S. L. Pool. New York: Springer, 2019, pp. 609–658.

    Chapter  Google Scholar 

  22. Loehr, J. A., S. M. Lee, K. L. English, J. Sibonga, S. M. Smith, B. A. Spiering, and R. D. Hagan. Musculoskeletal adaptations to training with the advanced resistive exercise device. Med. Sci. Sports Exerc. 43:146–156, 2011.

    Article  Google Scholar 

  23. Martín-Fuentes, I., J. M. Oliva-Lozano, and J. M. Muyor. Electromyographic activity in deadlift exercise and its variants. A systematic review. PLoS ONE. 15:e0229507, 2020.

    Article  Google Scholar 

  24. McNamara, K. P., K. A. Greene, A. M. Moore, L. Lenchik, and A. A. Weaver. Lumbopelvic muscle changes following long-duration spaceflight. Front. Physiol. 10:627, 2019.

    Article  Google Scholar 

  25. Parkkola, R., U. Rytökoski, and M. Kormano. Magnetic resonance imaging of the discs and trunk muscles in patients with chronic low back pain and healthy control subjects. Spine (Phila Pa 1976). 18:830–836, 1993.

    Article  CAS  Google Scholar 

  26. Pool-Goudzwaard, A. L., D. L. Belavý, J. A. Hides, C. A. Richardson, and C. J. Snijders. Low back pain in microgravity and bed rest studies. Aerosp. Med. Hum. Perform. 86:541–547, 2015.

    Article  Google Scholar 

  27. Ramachandran, V., S. Dalal, R. A. Scheuring, and J. A. Jones. Musculoskeletal injuries in astronauts: review of pre-flight, in-flight, post-flight, and extravehicular activity injuries. Curr. Pathobiol. Rep. 6:149–158, 2018.

    Article  CAS  Google Scholar 

  28. Ranger, T. A., F. M. Cicuttini, T. S. Jensen, S. Heritier, and D. M. Urquhart. Paraspinal muscle cross-sectional area predicts low back disability but not pain intensity. Spine J. 19:862–868, 2019.

    Article  Google Scholar 

  29. Ranson, C. A., A. F. Burnett, R. Kerslake, M. E. Batt, and P. B. O’Sullivan. An investigation into the use of MR imaging to determine the functional cross sectional area of lumbar paraspinal muscles. Eur. Spine J. 15:764–773, 2006.

    Article  Google Scholar 

  30. Sayson, J. V., and A. R. Hargens. Pathophysiology of low back pain during exposure to microgravity. Aviat. Space Environ. Med. 79:365–373, 2008.

    Article  Google Scholar 

  31. Sayson, J. V., J. Lotz, S. Parazynski, and A. R. Hargens. Back pain in space and post-flight spine injury: mechanisms and countermeasure development. Acta Astronaut. 86:24–38, 2013.

    Article  Google Scholar 

  32. Trappe, S., D. Costill, P. Gallagher, A. Creer, J. R. Peters, H. Evans, D. A. Riley, and R. H. Fitts. Exercise in space: human skeletal muscle after 6 months aboard the international space station. J. Appl. Physiol. 106(1159–1168):2009, 1985.

    Google Scholar 

  33. Valentin, S., T. Licka, and J. Elliott. Age and side-related morphometric MRI evaluation of trunk muscles in people without back pain. Man Ther. 20:90–95, 2015.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Charlie Warren, Meredith Rossi, and Saroochi Agarwal from NASA’s Lifetime Surveillance of Astronaut Health and Life Sciences Data Archive for preparing the imaging dataset and in-flight exercise data used in this study. Funding was provided by the NASA Human Research Program (NNX16AP89G). Dr. Ashley Weaver is supported by a NIH/NIA Career Development Award (K25 AG058804) and Katelyn Greene is supported by a NIH/NIA Predoctoral Fellowship (F31 AG069414).

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley A. Weaver.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greene, K.A., Tooze, J.A., Lenchik, L. et al. Change in Lumbar Muscle Size and Composition on MRI with Long-Duration Spaceflight. Ann Biomed Eng 50, 816–824 (2022). https://doi.org/10.1007/s10439-022-02968-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02968-3

Keywords

Navigation