Skip to main content
Log in

Effect of Assistance Using a Bilateral Robotic Knee Exoskeleton on Tibiofemoral Force Using a Neuromuscular Model

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tibiofemoral compression forces present during locomotion can result in high stress and risk damage to the knee. Powered assistance using a knee exoskeleton may reduce the knee load by reducing the work required by the muscles. However, the exact effect of assistance on the tibiofemoral force is unknown. The goal of this study was to investigate the effect of knee extension assistance during the early stance phase on the tibiofemoral force. Nine able-bodied adults walked on an inclined treadmill with a bilateral knee exoskeleton with assistance and with no assistance. Using an EMG-informed neuromusculoskeletal model, muscle forces were estimated, then utilized to estimate the tibiofemoral contact force. Results showed a 28% reduction in the knee moment, which resulted in approximately a 15% decrease in knee extensor muscle activation and a 20% reduction in subsequent muscle force, leading to a significant 10% reduction in peak and 9% reduction in average tibiofemoral contact force during the early stance phase (p < 0.05). The results indicate the tibiofemoral force is highly dependent on the knee kinetics and quadricep muscle activation due to their influence on knee extensor muscle forces, the primary contributor to the knee load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alexander, N., and H. Schwameder. Effect of sloped walking on lower limb muscle forces. Gait & Posture. 47:62–67, 2016

    Article  Google Scholar 

  2. Alexander, N., and H. Schwameder. Lower limb joint forces during walking on the level and slopes at different inclinations. Gait & Posture. 45:137–142, 2016

    Article  Google Scholar 

  3. Alkner, B. A., P. A. Tesch, and H. E. Berg. Quadriceps EMG/force relationship in knee extension and leg press. Med. Sci. Sports Exerc. 32(2):459–463, 2000

    Article  CAS  Google Scholar 

  4. Anderson, F., and M. Pandy. A dynamic optimization solution for vertical jumping in three dimensions. Comput. Methods Biomech. Biomed. Eng. 2:201–231, 1999

    Article  Google Scholar 

  5. Arnold, E. M., S. R. Hamner, A. Seth, M. Millard, and S. L. Delp. How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds. J. Exp. Biol. 216:2150, 2013

    PubMed  PubMed Central  Google Scholar 

  6. Buchanan, T. S., D. G. Lloyd, K. Manal, and T. F. Besier. Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J. Appl. Biomech. 20:367–395, 2004

    Article  Google Scholar 

  7. Cain, S. M., K. E. Gordon, and D. P. Ferris. Locomotor adaptation to a powered ankle-foot orthosis depends on control method. J. NeuroEng. Rehabil. 4:48, 2007

    Article  Google Scholar 

  8. D’Lima, D. D., B. J. Fregly, S. Patil, N. Steklov, and C. W. Colwell Jr. Knee joint forces: prediction, measurement, and significance. Proc. Inst. Mech. Eng. Part H. 226:95–102, 2012

    Article  Google Scholar 

  9. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007

    Article  Google Scholar 

  10. Delp, S. L., J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37:757–767, 1990

    Article  CAS  Google Scholar 

  11. Demers, M. S., S. Pal, and S. L. Delp. Changes in tibiofemoral forces due to variations in muscle activity during walking. J. Orthop. Res. 32:769–776, 2014

    Article  Google Scholar 

  12. Franz, J. R., and R. Kram. Advanced age and the mechanics of uphill walking: a joint-level, inverse dynamic analysis. Gait & Posture. 39:135–140, 2014

    Article  Google Scholar 

  13. Friederich, J. A., and R. A. Brand. Muscle fiber architecture in the human lower limb. J. Biomech. 23:91–95, 1990

    Article  CAS  Google Scholar 

  14. Galle, S., P. Malcolm, W. Derave, and D. De Clercq. Adaptation to walking with an exoskeleton that assists ankle extension. Gait & Posture. 38:495–499, 2013

    Article  CAS  Google Scholar 

  15. Griffin, T. M., and F. Guilak. The role of mechanical loading in the onset and progression of osteoarthritis. Exerc. Sport Sci. Rev. 33(4):195–200, 2005

    Article  Google Scholar 

  16. Haight, D. J., Z. F. Lerner, W. J. Board, and R. C. Browning. A comparison of slow, uphill and fast, level walking on lower extremity biomechanics and tibiofemoral joint loading in obese and nonobese adults. J. Orthop. Res. 32:324–330, 2014

    Article  Google Scholar 

  17. Hall, M., L. Diamond, G. Lenton, C. Pizzolato, and D. Saxby. Immediate effects of valgus knee bracing on tibiofemoral contact forces and knee muscle forces. Gait & Posture. 68:55–62, 2018

    Article  Google Scholar 

  18. Huang, L., J. Zhuang, and Y. Zhang. The application of computer musculoskeletal modeling and simulation to investigate compressive tibiofemoral force and muscle functions in obese children. Comput. Math. Methods Med. 2013. https://doi.org/10.1155/2013/305434

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kang, I., H. Hsu, and A. Young. The effect of hip assistance levels on human energetic cost using robotic hip exoskeletons. IEEE Robot. Autom. Lett. 4:430–437, 2019

    Article  Google Scholar 

  20. Krishnaswamy, P., E. N. Brown, and H. M. Herr. Human leg model predicts ankle muscle-tendon morphology, state, roles and energetics in walking. PLoS Comput. Biol. 7:e1001107, 2011

    Article  CAS  Google Scholar 

  21. Kutzner, I., B. Heinlein, F. Graichen, A. Bender, A. Rohlmann, A. Halder, A. Beier, and G. Bergmann. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J. Biomech. 43:2164–2173, 2010

    Article  CAS  Google Scholar 

  22. Lee, D., E. C. Kwak, B. J. McLain, I. Kang, and A. J. Young. Effects of assistance during early stance phase using a robotic knee orthosis on energetics, muscle activity, and joint mechanics during incline and decline walking. IEEE Trans. Neural Syst. Rehabil. Eng. 28:914–923, 2020

    Article  Google Scholar 

  23. Lee, D., B. J. Mclain, I. Kang, and A. Young. Biomechanical comparison of assistance strategies using a bilateral robotic knee exoskeleton. IEEE Trans. Biomed. Eng. 68(9):2870–9, 2021

    Article  Google Scholar 

  24. Lenton, G. K., P. J. Bishop, D. J. Saxby, T. L. A. Doyle, C. Pizzolato, D. Billing, and D. G. Lloyd. Tibiofemoral joint contact forces increase with load magnitude and walking speed but remain almost unchanged with different types of carried load. PLoS ONE. 13:e0206859, 2018

    Article  Google Scholar 

  25. Lichtwark, G. A., and A. M. Wilson. Interactions between the human gastrocnemius muscle and the Achilles tendon during incline, level and decline locomotion. J. Exp. Biol. 209:4379, 2006

    Article  CAS  Google Scholar 

  26. Lloyd, D. G., and T. F. Besier. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36:765–776, 2003

    Article  Google Scholar 

  27. Mandl, L. A. Osteoarthritis year in review 2018: clinical. Osteoarthr. Cartil. 27:359–364, 2019

    Article  CAS  Google Scholar 

  28. Molinaro, D. D., A. S. King, and A. J. Young. Biomechanical analysis of common solid waste collection throwing techniques using OpenSim and an EMG-assisted solver. J. Biomech. 104:109704, 2020

    Article  Google Scholar 

  29. National Center for Health Statistics and National Health and Nutrition Examination Survey. Anthropometric reference data for children and adults; United States, 2011-2014. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics, 2016.

  30. Neptune, R., and K. Sasaki. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. J. Exp. Biol. 208:799–808, 2005

    Article  Google Scholar 

  31. Nisell, R., G. Németh, and H. Ohlsén. Joint forces in extension of the knee: analysis of a mechanical model. Acta Orthop. Scand. 57:41–46, 1986

    Article  CAS  Google Scholar 

  32. Park, E., T. Akbas, A. Eckert-Erdheim, L. Sloot, R. Nuckols, D. Orzel, L. Schumm, T. Ellis, L. Awad, and C. Walsh. A hinge-free, non-restrictive, lightweight tethered exosuit for knee extension assistance during walking. IEEE Trans. Med. Robot. Bionics. 2(2):165–175, 2020

    Article  Google Scholar 

  33. Pizzolato, C., D. G. Lloyd, M. Sartori, E. Ceseracciu, T. F. Besier, B. J. Fregly, and M. Reggiani. CEINMS: a toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks. J. Biomech. 48:3929–3936, 2015

    Article  Google Scholar 

  34. Sartori, M., D. Farina, and D. G. Lloyd. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. J. Biomech. 47:3613–3621, 2014

    Article  Google Scholar 

  35. Sasaki, K., and R. R. Neptune. Individual muscle contributions to the axial knee joint contact force during normal walking. J. Biomech. 43:2780–2784, 2010

    Article  Google Scholar 

  36. Scherpereel, K. L., N. B. Bolus, H. K. Jeong, O. T. Inan, and A. J. Young. Estimating knee joint load using acoustic emissions during ambulation. Ann. Biomed. Eng. 49(3):1000–1011, 2020. https://doi.org/10.1007/s10439-020-02641-7

    Article  PubMed  Google Scholar 

  37. Schutte, L. M. Using Musculoskeletal Models to Explore Strategies for Improving Performance in Electrical Stimulation-Induced Leg Cycle Ergometry. Ann Arbor: Stanford University, p. 192, 1993

    Google Scholar 

  38. Starkey, S. C., G. K. Lenton, D. J. Saxby, R. S. Hinman, K. L. Bennell, T. Wrigley, D. Lloyd, and M. Hall. Effect of exercise on knee joint contact forces in people following medial partial meniscectomy: a secondary analysis of a randomised controlled trial. Gait & Posture. 79:203–209, 2020

    Article  Google Scholar 

  39. Steele, K. M., M. S. DeMers, M. H. Schwartz, and S. L. Delp. Compressive tibiofemoral force during crouch gait. Gait & Posture. 35:556–560, 2012

    Article  Google Scholar 

  40. Taylor, W. R., M. O. Heller, G. Bergmann, and G. N. Duda. Tibio-femoral loading during human gait and stair climbing. J. Orthop. Res. 22:625–632, 2004

    Article  Google Scholar 

  41. Wickiewicz, T. L., R. R. Roy, P. L. Powell, and V. R. Edgerton. Muscle architecture of the human lower limb. Clin Orthop Relat Res. 179:275–283, 1983

    Article  Google Scholar 

  42. Yamaguchi, G. T., and F. E. Zajac. A planar model of the knee joint to characterize the knee extensor mechanism. J. Biomech. 22:1–10, 1989

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Shriner’s Hospitals for Children, NextFlex NMMI Grant, NSF NRI Award #1830498, Georgia Tech Petit Research Scholar Program, and The Imlay Foundation.

Conflict of interest

There is no conflict of interest reported by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bailey J. McLain.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLain, B.J., Lee, D., Mulrine, S.C. et al. Effect of Assistance Using a Bilateral Robotic Knee Exoskeleton on Tibiofemoral Force Using a Neuromuscular Model. Ann Biomed Eng 50, 716–727 (2022). https://doi.org/10.1007/s10439-022-02950-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02950-z

Keywords

Navigation