Skip to main content
Log in

Effects of MitraClip Therapy on Mitral Flow Patterns and Vortex Formation: An In Vitro Study

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

MitraClip transcatheter edge-to-edge repair is used to treat mitral regurgitation (MR). While MR is reduced, diastolic left ventricular flows are altered. An in vitro left heart simulator was used to assess a porcine mitral valve in the native, MR, and MR plus MitraClip cases. Velocity, vorticity, and Reynolds shear stress (RSS) were quantified by particle image velocimetry. Peak velocity increased from 1.20 m/s for native to 1.30 m/s with MR. With MitraClip, two divergent jets of 1.18 and 0.61 m/s emerged. Higher vorticity was observed with MR than native and lessened with MitraClip. MitraClip resulted in shear layer formation and downstream vortex formation. Native RSS decreased from 33 Pa in acceleration to 29 Pa at peak flow, then increased to 31 Pa with deceleration. MR RSS increased from 27 Pa in acceleration to 40 Pa at peak flow to 59 Pa during deceleration. MitraClip RSS increased from 79 Pa in acceleration to 162 Pa during peak flow, then decreased to 45 Pa during deceleration. After MitraClip, two divergent jets of reduced velocity emerged, accompanied by shear layers and recirculation. Chaotic flow developed, resulting in elevated RSS magnitude and coverage. Findings help understand consequences of MitraClip on left ventricular flow dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

MR:

Mitral regurgitation

MV:

Mitral valve

PIV:

Particle image velocimetry

MRF:

Mitral regurgitant fraction

MVPG:

Mitral valve pressure gradient

EOA:

Effective orifice area

RSS:

Reynolds shear stress

TEER:

Transcatheter edge-to-edge repair

References

  1. Akiyama, K., N. Nakamura, K. Itatani, Y. Naito, M. Kinoshita, M. Shimizu, S. Hamaoka, H. Kato, H. Yasumoto, and Y. Nakajima. Flow-dynamics assessment of mitral-valve surgery by intraoperative vector flow mapping. Interact. Cardiovasc. Thorac. Surg. 24:869–875, 2017.

    Article  Google Scholar 

  2. Andrikopoulou E., R. N. M. Mitchell, A. Y. K. Kim, D. C. S. Shook, T. K. Kaneko, P. B. S. Shah and Y. P. S. Sun. 496 A fatal case of MitraClip thrombosis. Eur. Heart J. 21: 2020.

  3. Benjamin E. J., S. S. Virani, C. W. Callaway, A. M. Chamberlain, A. R. Chang, S. Cheng, S. E. Chiuve, M. Cushman, F. N. Delling and R. J. C. Deo. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. 2018.

  4. An in vitro investigation. Bloodworth IV C. H., E. L. Pierce, K. Kohli, N. J. Deaton, K. J. Jones, R. Duvvuri, N. Kamioka, V. C. Babaliaros and A. P. Yoganathan. Impact of simulated MitraClip on forward flow obstruction in the setting of mitral leaflet tethering. Catheterization and Cardiovascular Interventions. 92:797–807, 2018.

    Article  Google Scholar 

  5. Brouwer, H. J., M. C. Den Heijer, B. P. Paelinck, P. Debonnaire, M. Vanderheyden, C. M. Van De Heyning, D. De Bock, P. Coussement, G. Saad, and B. Ferdinande. Left ventricular remodelling patterns after MitraClip implantation in patients with severe mitral valve regurgitation: mechanistic insights and prognostic implications. European Heart Journal-Cardiovascular Imaging. 20:307–313, 2019.

    Article  Google Scholar 

  6. Browne, P., A. Ramuzat, R. Saxena, and A. P. Yoganathan. Experimental investigation of the steady flow downstream of the St. Jude bileaflet heart valve: a comparison between laser Doppler velocimetry and particle image velocimetry techniques. Ann. Biomed. Eng. 28:39–47, 2000.

    Article  CAS  Google Scholar 

  7. Caballero, A., W. Mao, R. McKay, R. T. Hahn, and W. Sun. A comprehensive engineering analysis of left heart dynamics after MitraClip in a functional mitral regurgitation patient. Front. Physiol. 11:432, 2020.

    Article  Google Scholar 

  8. Cimino, S., D. Palombizio, F. Cicogna, D. Cantisani, M. Reali, D. Filomena, V. Petronilli, C. Iacoboni, and L. Agati. Significant increase of flow kinetic energy in “nonresponders” patients to cardiac resynchronization therapy. Echocardiography. 34:709–715, 2017.

    Article  Google Scholar 

  9. Cimino, S., G. Pedrizzetti, G. Tonti, E. Canali, V. Petronilli, L. De Luca, C. Iacoboni, and L. Agati. In vivo analysis of intraventricular fluid dynamics in healthy hearts. Eur. J. Mech. Biofluids. 35:40–46, 2012.

    Article  Google Scholar 

  10. Croft, L. R., J. H. Jimenez, R. C. Gorman, J. H. Gorman III., and A. P. Yoganathan. Efficacy of the edge-to-edge repair in the setting of a dilated ventricle: an in vitro study. Ann. Thorac. Surg. 84:1578–1584, 2007.

    Article  Google Scholar 

  11. Eggebrecht, H., S. Schelle, M. Puls, B. Plicht, R. S. von Bardeleben, C. Butter, A. E. May, E. Lubos, P. Boekstegers, and T. Ouarrak. Risk and outcomes of complications during and after MitraClip implantation: experience in 828 patients from the German TRAnscatheter mitral valve interventions (TRAMI) registry. Catheter. Cardiovasc. Interv. 86:728–735, 2015.

    Article  Google Scholar 

  12. Filomena D., S. Cimino, V. Maestrini, D. Cantisani, V. Petronilli, M. Mancone, G. Tonti, G. Pedrizzetti and L. Agati. Changes in intraventricular flow patterns after MitraClip implant in patients with functional severe mitral regurgitation. J. Am. Soc. Echocardiogr. 32:1250–1253. e1251, 2019.

  13. Forleo, M., and L. P. Dasi. Effect of hypertension on the closing dynamics and lagrangian blood damage index measure of the B-Datum Regurgitant Jet in a bileaflet mechanical heart valve. Ann. Biomed. Eng. 42:110–122, 2014.

    Article  Google Scholar 

  14. Gooden S. C. M. In Vitro Modeling of Mitral Valve Hemodynamics: Significance of Left Atrium Function in the Normal and Repaired Mitral Valve with Simulated MitraClip. The Ohio State University, 2019.

  15. Gooden S. C.-M., H. Hatoum, W. Zhang, K. D. Boudoulas and L. P. Dasi. Multiple MitraClips: the balancing act between pressure gradient and regurgitation. J. Thorac. Cardiovasc. Surg. 2020.

  16. Grayburn, P. A., B. Carabello, J. Hung, L. D. Gillam, D. Liang, M. J. Mack, P. M. McCarthy, D. C. Miller, A. Trento, and R. J. Siegel. Defining “severe” secondary mitral regurgitation: emphasizing an integrated approach. J. Am. Coll. Cardiol. 64:2792–2801, 2014.

    Article  Google Scholar 

  17. Hamm, K., S. Barth, A. Diegeler, and S. Kerber. Stroke and thrombus formation appending to the MitraClip: what is the appropriate anticoagulation regimen? J. Heart Valve Dis. 22:713–715, 2013.

    PubMed  Google Scholar 

  18. Hatoum, H., and L. P. Dasi. Spatiotemporal complexity of the aortic sinus vortex as a function of leaflet calcification. Ann. Biomed. Eng. 47:1116–1128, 2019.

    Article  Google Scholar 

  19. Hatoum, H., E. Girault, F. Heim, and L. P. Dasi. In-vitro characterization of self-expandable textile transcatheter aortic valves. J. Mech. Behav. Biomed. Mater. 103:103559, 2020.

    Article  CAS  Google Scholar 

  20. Hatoum, H., A. Yousefi, S. Lilly, P. Maureira, J. Crestanello, and L. P. Dasi. An in vitro evaluation of turbulence after transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 156:1837–1848, 2018.

    Article  Google Scholar 

  21. Imbrie-Moore, A. M., M. H. Park, M. J. Paulsen, M. Sellke, R. Kulkami, H. Wang, Y. Zhu, J. M. Farry, A. T. Bourdillon, and C. Callinan. Biomimetic six-axis robots replicate human cardiac papillary muscle motion: pioneering the next generation of biomechanical heart simulator technology. J. R. Soc. Interface. 17:20200614, 2020.

    Article  Google Scholar 

  22. Itatani K., T. Okada, T. Uejima, T. Tanaka, M. Ono, K. Miyaji and K. Takenaka. Intraventricular flow velocity vector visualization based on the continuity equation and measurements of vorticity and wall shear stress. Jpn. J. Appl. Phys. 52:07HF16, 2013.

  23. Jeyhani, M., S. Shahriari, and M. Labrosse. Experimental investigation of left ventricular flow patterns after percutaneous edge-to-edge mitral valve repair. Artif. Organs. 42:516–524, 2018.

    Article  Google Scholar 

  24. Jimenez, J. H., D. D. Soerensen, Z. He, S. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann. Biomed. Eng. 31:1171–1181, 2003.

    Article  Google Scholar 

  25. Kheradvar, A., H. Houle, G. Pedrizzetti, G. Tonti, T. Belcik, M. Ashraf, J. R. Lindner, M. Gharib, and D. Sahn. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J. Am. Soc. Echocardiogr. 23:86–94, 2010.

    Article  Google Scholar 

  26. Kim, W. Y., P. G. Walker, E. M. Pedersen, J. K. Poulsen, S. Oyre, K. Houlind, and A. P. Yoganathan. Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity mapping. J. Am. Coll. Cardiol. 26:224–238, 1995.

    Article  CAS  Google Scholar 

  27. Knapp Y., E. Bertrand, F. Mouret, and J. Stefanini. Flow structure characterization behind mitral valves in a double activated heart simulator. In: Fifth International Symposium on Particle Image Velocimetry, Busan, Korea, Sept 2003, pp. 22–24.

  28. Nishimura, R. A., C. M. Otto, R. O. Bonow, B. A. Carabello, J. P. Erwin, R. A. Guyton, P. T. O’Gara, C. E. Ruiz, N. J. Skubas, P. Sorajja, T. M. Sundt, and J. D. Thomas. 2014 AHA/ACC guideline for the management of patients with valvular heart disease. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 63:e57–e185, 2014.

    Google Scholar 

  29. Orban, M., D. Braun, C. Sonne, R. Thaler, C. Grebmer, H. Lesevic, A. Schomig, J. Mehilli, S. Massberg, and J. Hausleiter. Dangerous liaison: successful percutaneous edge-to-edge mitral valve repair in patients with end-stage systolic heart failure can cause left ventricular thrombus formation. EuroIntervention. 10:253–259, 2014.

    Article  Google Scholar 

  30. Orban, M., H. Lesevic, S. Massberg, and J. Hausleiter. Left ventricular thrombus formation after successful percutaneous edge-to-edge mitral valve repair. Eur. Heart J. 34:942–942, 2013.

    Article  Google Scholar 

  31. Padala, M., L. I. Gyoneva, V. H. Thourani, and A. P. Yoganathan. Impact of mitral valve geometry on hemodynamic efficacy of surgical repair in secondary mitral regurgitation. Heart Valve Dis. 23:79–87, 2014.

    Google Scholar 

  32. Padala S. M. Mechanics of the mitral valve after surgical repair-an in vitro study. Georgia Institute of Technology, 2010.

  33. Patzelt, J., W. Zhang, R. Sauter, M. Mezger, H. Nording, M. Ulrich, A. Becker, T. Patzelt, V. Rudolph, and I. Eitel. Elevated mitral valve pressure gradient is predictive of long-term outcome after percutaneous edge-to-edge mitral valve repair in patients with degenerative mitral regurgitation (MR), but not in functional MR. J. Am. Heart Assoc. 8:e011366, 2019.

    Article  CAS  Google Scholar 

  34. Pedrizzetti, G., and F. Domenichini. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95:108101, 2005.

    Article  Google Scholar 

  35. Pedrizzetti, G., F. Domenichini, and G. Tonti. On the left ventricular vortex reversal after mitral valve replacement. Ann. Biomed. Eng. 38:769–773, 2010.

    Article  Google Scholar 

  36. Pedrizzetti, G., G. La Canna, O. Alfieri, and G. J. Tonti. The vortex—an early predictor of cardiovascular outcome? Nat. Rev. Cardiol. 11:545–553, 2014.

    Article  Google Scholar 

  37. Pedrizzetti, G., A. R. Martiniello, V. Bianchi, A. D’Onofrio, P. Caso, and G. Tonti. Changes in electrical activation modify the orientation of left ventricular flow momentum: novel observations using echocardiographic particle image velocimetry. Eur. Heart J. Cardiovasc. Imaging. 17:203–209, 2016.

    Article  Google Scholar 

  38. Peskin, C. S. Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10:252–271, 1972.

    Article  Google Scholar 

  39. Ponnaluri S. V., S. Deutsch, M. S. Sacks and K. B. Manning. Transcatheter heart valve downstream fluid dynamics in an accelerated evaluation environment. Ann. Biomed. Eng. 1-13, 2021.

  40. Rabbah, J.-P., N. Saikrishnan, and A. P. Yoganathan. A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics. Ann. Biomed. Eng. 41:305–315, 2013.

    Article  Google Scholar 

  41. Redaelli, A., G. Guadagni, R. Fumero, F. Maisano, and O. Alfieri. A computational study of the hemodynamics after “edge-to-edge” mitral valve repair. Biomed. Eng. 123:565–570, 2001.

    CAS  Google Scholar 

  42. Shi, L., Z. He. Hemodynamics of the mitral valve under edge-to-edge repair: an in vitro steady flow study. J. Biomech. Eng. 131, 2009.

  43. Sutera, S. P. Flow-induced trauma to blood cells. Circulation research. 41:2–8, 1977.

    Article  CAS  Google Scholar 

  44. Thomas, L., E. Foster, and N. B. Schiller. Peak mitral inflow velocity predicts mitral regurgitation severity. J. Am. Coll. Cardiol. 31:174–179, 1998.

    Article  CAS  Google Scholar 

  45. Umeda, H., A. Isotani, M. Yano, H. Tomiyama, S. Shirai, and K. Ando. Thrombus formation at the left ventricular apex due to split inflow after mitraclip implantation. Cardiovasc. Interv. 12:e205–e206, 2019.

    Google Scholar 

Download references

Funding

This research was partly supported by the National Institutes of Health under award number R01HL119824 and the American Heart Association under award number 19POST34380804.

Conflict of interest

L.P. Dasi reports having patent applications filed on novel polymeric valves, vortex generators and superhydrophobic/omniphobic surfaces. Hatoum and Dasi have filed patent application on computational predictive modeling of thrombosis in heart valves. The other authors report no conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi P. Dasi.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplemental Video 1: Time-Series Video for the Native Valve in the Commissural Plane. PM and AL note the posteromedial and anterolateral papillary muscles, respectively (M4V 2141 kb)

Supplemental Video 2: Time-Series Video for the Regurgitant Valve in the Commissural Plane. PM and AL note the posteromedial and anterolateral papillary muscles, respectively (M4V 3645 kb)

Supplemental Video 3: Time-Series Video for MitraClip Repair in the Commissural Plane. PM and AL note the posteromedial and anterolateral papillary muscles, respectively (M4V 2089 kb)

Supplemental Video 4: Time-Series Video for the Native Valve in the Anterior-Posterior Plane. AL notes the anterolateral papillary muscle (M4V 3545 kb)

Supplemental Video 5: Time-Series Video for the Regurgitant Valve in the Anterior-Posterior Plane. AL notes the anterolateral papillary muscle (M4V 4994 kb)

Supplemental Video 6: Time-Series Video for MitraClip Repair in the Anterior-Posterior Plane. AL notes the anterolateral papillary muscle (M4V 4000 kb)

Supplemental Video 7: MitraClip Flow Visualization for the Commissural Plane (MP4 1320 kb)

Supplemental Video 8: Cycle-to-Cycle Variation for the Native Valve in the Commissural Plane during Flow Acceleration. PM and AL note the posteromedial and anterolateral papillary muscles, respectively (M4V 2415 kb)

Supplemental Video 9: Cycle-to-Cycle Variation for the Native Valve in the Commissural Plane during Peak Flow. PM and AL note the posteromedial and anterolateral papillary muscles, respectively (M4V 4150 kb)

Supplemental Video 10: Cycle-to-Cycle Variation for the Native Valve in the Commissural Plane during Flow Deceleration. PM and AL note the posteromedial and anterolateral papillary muscles, respectively (M4V 5359 kb)

Supplemental Video 11: Cycle-to-Cycle Variation for the Native Valve in the Anterior-Posterior Plane during Flow Acceleration. AL notes the anterolateral papillary muscle (M4V 5330 kb)

Supplemental Video 12: Cycle-to-Cycle Variation for the Native Valve in the Anterior-Posterior Plane during Peak Flow. AL notes the anterolateral papillary muscle (M4V 7089 kb)

Supplemental Video 13: Cycle-to-Cycle Variation for the Native Valve in the Anterior-Posterior Plane during Flow Deceleration. AL notes the anterolateral papillary muscle (M4V 8032 kb)

Supplemental Video 14: Cycle-to-Cycle Variation for the Regurgitant Valve in the Commissural Plane during Flow Acceleration. PM and AL note the posteromedial and anterolateral papillary muscles, respectively. (M4V 5256 kb)

Supplemental Video 15: Cycle-to-Cycle Variation for the Regurgitant Valve in the Commissural Plane during Peak Flow. PM and AL note the posteromedial and anterolateral papillary muscles, respectively (M4V 10654 kb)

Supplemental Video 16: Cycle-to-Cycle Variation for the Regurgitant Valve in the Commissural Plane during Flow Deceleration. PM and AL note the posteromedial and anterolateral papillary muscles, respectively (M4V 9710 kb)

Supplemental Video 17: Cycle-to-Cycle Variation for the Regurgitant Valve in the Anterior-Posterior Plane during Flow Acceleration. AL notes the anterolateral papillary muscle (M4V 9919 kb)

Supplemental Video 18: Cycle-to-Cycle Variation for the Regurgitant Valve in the Anterior-Posterior Plane during Peak Flow. AL notes the anterolateral papillary muscle (M4V 11473 kb)

Supplemental Video 19: Cycle-to-Cycle Variation for the Regurgitant Valve in the Anterior-Posterior Plane during Flow Deceleration. AL notes the anterolateral papillary muscle (M4V 9355 kb)

Supplemental Video 20: Cycle-to-Cycle Variation for MitraClip Repair in the Commissural Plane during Flow Acceleration. PM and AL note the posteromedial and anterolateral papillary muscles, respectively (M4V 3608 kb)

Supplemental Video 21: Cycle-to-Cycle Variation for MitraClip Repair in the Commissural Plane during Peak Flow. PM and AL note the posteromedial and anterolateral papillary muscles, respectively (M4V 5785 kb)

Supplemental Video 22: Cycle-to-Cycle Variation for MitraClip Repair in the Commissural Plane during Flow Deceleration. PM and AL note the posteromedial and anterolateral papillary muscles, respectively (M4V 6089 kb)

Supplemental Video 23: Cycle-to-Cycle Variation for MitraClip Repair in the Anterior-Posterior Plane during Flow Acceleration. AL notes the anterolateral papillary muscle (M4V 6747 kb)

Supplemental Video 24: Cycle-to-Cycle Variation for MitraClip Repair in the Anterior-Posterior Plane during Peak Flow. AL notes the anterolateral papillary muscle (M4V 7241 kb)

Supplemental Video 25: Cycle-to-Cycle Variation for MitraClip Repair in the Anterior-Posterior Plane during Flow Deceleration. AL notes the anterolateral papillary muscle (M4V 7718 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gooden, S.CM., Hatoum, H., Boudoulas, K.D. et al. Effects of MitraClip Therapy on Mitral Flow Patterns and Vortex Formation: An In Vitro Study. Ann Biomed Eng 50, 680–690 (2022). https://doi.org/10.1007/s10439-022-02944-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02944-x

Keywords

Navigation