Skip to main content
Log in

Region-Dependent Viscoelastic Properties of Human Brain Tissue Under Large Deformations

  • Concussions
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study characterizes the mechanical properties of human brain tissue resected during the course of surgery under multistep indentation loading up to 30% strain. The experimental characterization using fresh, post-operative, human brain tissue is highly advantageous since postmortem times can affect its biomechanical behavior. Although the quasilinear theory of viscoelasticity (QLV) approach has been widely used to model brain tissue mechanical properties, our analysis concluded that the linear viscoelastic approach provided a better fit to the experimental data overall. The only statistically significant regional difference in observed stiffness was between the cortex gray and dentate gyrus. There were no statistically significant age or sex dependent differences, although the data suggested that the cortex white matter in males was stiffer than that in females. Our results can help improve the accuracy of finite element models of brain tissue deformation to predict its response to traumatic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Abba, M. T. and S. R. Kalidindi, Protocols for studying the time-dependent mechanical response of viscoelastic materials using spherical indentation stress-strain curves. Mechanics of Time-Dependent Materials, 2020.

  2. Alhilali, L. M., J. A. Delic, S. Gumus, and S. Fakhran. Evaluation of white matter injury patterns underlying neuropsychiatric symptoms after mild traumatic brain injury. Radiology. 277(3):793–800, 2015.

    Article  PubMed  Google Scholar 

  3. Bayly, P. V., L. A. Taber, and C. D. Kroenke. Mechanical forces in cerebral cortical folding: a review of measurements and models. J. Mech. Behav. Biomed. Mater. 29:568–581, 2014.

    Article  CAS  PubMed  Google Scholar 

  4. Bentil, S. A., and R. B. Dupaix. Exploring the mechanical behavior of degrading swine neural tissue at low strain rates via the fractional Zener constitutive model. J. Mech. Behav. Biomed. Mater. 30:83–90, 2014.

    Article  PubMed  Google Scholar 

  5. Budday, S., R. Nay, R. de Rooij, P. Steinmann, T. Wyrobek, T. C. Ovaert, and E. Kuhl. Mechanical properties of gray and white matter brain tissue by indentation. J. Mech. Behav. Biomed. Mater. 46:318–330, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Budday, S., G. Sommer, C. Birkl, C. Langkammer, J. Haybaeck, J. Kohnert, M. Bauer, F. Paulsen, P. Steinmann, E. Kuhl, and G. A. Holzapfel. Mechanical characterization of human brain tissue. Acta Biomater. 48:319–340, 2017.

    Article  CAS  PubMed  Google Scholar 

  7. Chatelin, S., J. Vappou, S. Roth, J. S. Raul, and R. Willinger. Towards child versus adult brain mechanical properties. J. Mech. Behav. Biomed. Mater. 6:166–173, 2012.

    Article  CAS  PubMed  Google Scholar 

  8. Christ, A. F., K. Franze, H. Gautier, P. Moshayedi, J. Fawcett, R. J. Franklin, R. T. Karadottir, and J. Guck. Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy. J. Biomech. 43(15):2986–2992, 2010.

    Article  PubMed  Google Scholar 

  9. Dolle, J. P., A. Jaye, S. A. Anderson, H. Ahmadzadeh, V. B. Shenoy, and D. H. Smith. Newfound sex differences in axonal structure underlie differential outcomes from in vitro traumatic axonal injury. Exp. Neurol. 300:121–134, 2018.

    Article  PubMed  Google Scholar 

  10. Donohue, B. R., A. Ambrus, and S. R. Kalidindi. Critical evaluation of the indentation data analyses methods for the extraction of isotropic uniaxial mechanical properties using finite element models. Acta Mater. 60(9):3943–3952, 2012.

    Article  CAS  Google Scholar 

  11. Elkin, B. S., A. Ilankova, and B. Morrison. Dynamic, regional mechanical properties of the porcine brain: indentation in the coronal plane. J. Biomech. Eng. 133(7):071009, 2011.

    Article  PubMed  Google Scholar 

  12. Elkin, B. S., A. Ilankovan, and B. Morrison. Age-dependent regional mechanical properties of the rat hippocampus and cortex. J. Biomech. Eng. 132(1):011010, 2010.

    Article  PubMed  Google Scholar 

  13. Elkin, B. S., A. I. Ilankovan, and B. Morrison 3rd. A detailed viscoelastic characterization of the P17 and adult rat brain. J. Neurotrauma. 28(11):2235–2244, 2011.

    Article  PubMed  Google Scholar 

  14. Elkin, B. S., and B. Morrison III. Viscoelastic properties of the P17 and adult rat brain from indentation in the coronal plane. J. Biomech. Eng. 135:114507, 2013.

    Article  PubMed  Google Scholar 

  15. Faul, M. and V. Coronado, Traumatic Brain Injury in The United States, U.D.o.H.a.H. Services, Editor. 2010.

  16. Finan, J. D., B. S. Elkin, E. M. Pearson, I. L. Kalbian, and B. Morrison 3rd. Viscoelastic properties of the rat brain in the sagittal plane: effects of anatomical structure and age. Ann. Biomed. Eng. 40(1):70–78, 2012.

    Article  PubMed  Google Scholar 

  17. Finan, J. D., P. M. Fox, and B. Morrison 3rd. Non-ideal effects in indentation testing of soft tissues. Biomech. Model. Mechanobiol. 13:573–584, 2014.

    Article  PubMed  Google Scholar 

  18. Finan, J. D., S. N. Sundaresh, B. S. Elkin, G. M. McKhann 2nd., and B. Morrison 3rd. Regional mechanical properties of human brain tissue for computational models of traumatic brain injury. Acta Biomater. 55:333–339, 2017.

    Article  PubMed  Google Scholar 

  19. Galanaud, D., V. Perlbarg, R. Gupta, R. D. Stevens, P. Sanchez, E. Tollard, N. M. de Champfleur, J. Dinkel, S. Faivre, G. Soto-Ares, B. Veber, V. Cottenceau, F. Masson, T. Tourdias, E. Andre, G. Audibert, E. Schmitt, D. Ibarrola, F. Dailler, A. Vanhaudenhuyse, L. Tshibanda, J. F. Payen, J. F. Le Bas, A. Krainik, N. Bruder, N. Girard, S. Laureys, H. Benali, L. Puybasset, Neuro Imaging for Coma, and C. Recovery. Assessment of white matter injury and outcome in severe brain trauma: a prospective multicenter cohort. Anesthesiology. 117(6):1300–1310, 2012.

    Article  PubMed  Google Scholar 

  20. Garo, A., M. Hrapko, J. A. van Dommelen, and G. W. Peters. Towards a reliable characterisation of the mechanical behaviour of brain tissue: the effects of post-mortem time and sample preparation. Biorheology. 44(1):51–58, 2007.

    CAS  PubMed  Google Scholar 

  21. Gennatas, E. D., B. B. Avants, D. H. Wolf, T. D. Satterthwaite, K. Ruparel, R. Ciric, H. Hakonarson, R. E. Gur, and R. C. Gur. Age-related effects and sex differences in gray matter density, volume, mass, and cortical thickness from childhood to young adulthood. J. Neurosci. 37(20):5065–5073, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gessel, L. M., S. K. Fields, C. L. Collins, R. W. Dick, and R. D. Comstock. Concussions among United States high school and collegiate athletes. J. Athl. Train. 42(4):495–503, 2007.

    PubMed  PubMed Central  Google Scholar 

  23. Gupte, R., W. Brooks, R. Vukas, J. Pierce, and J. Harris. Sex differences in traumatic brain injury: what we know and what we should know. J. Neurotrauma. 36(22):3063–3091, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gur, R. C., and R. E. Gur. Complementarity of sex differences in brain and behavior: From laterality to multimodal neuroimaging. J.Neurosci. Res. 95(1–2):189–199, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gur, R. C., B. I. Turetsky, M. Matsui, M. Yan, W. Bilker, P. Hughett, and R. E. Gur. Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. J. Neurosci. 19(10):4065–4072, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Harding, J. W., and I. N. Sneddon. The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch. Proc. Camb. Philos. Soc. 41(1):16–26, 1945.

    Article  Google Scholar 

  27. Hayes, W. C., L. M. Keer, G. Herrmann, and L. F. Mockros. A mathematical analysis for indentation tests of articular cartilage. J. Biomech. 5:541–551, 1972.

    Article  CAS  PubMed  Google Scholar 

  28. Jin, X., F. Zhu, H. Mao, M. Shen, and K. H. Yang. A comprehensive experimental study on material properties of human brain tissue. J. Biomech. 46(16):2795–2801, 2013.

    Article  PubMed  Google Scholar 

  29. Kalidindi, S. R., and S. Pathak. Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Mater. 56(14):3523–3532, 2008.

    Article  CAS  Google Scholar 

  30. Laksari, K., M. Shafieian, and K. Darvish. Constitutive model for brain tissue under finite compression. J. Biomech. 45(4):642–646, 2012.

    Article  PubMed  Google Scholar 

  31. Levin, H. S., and R. R. Diaz-Arrastia. Diagnosis, prognosis, and clinical management of mild traumatic brain injury. Lancet Neurol. 14(5):506–517, 2015.

    Article  PubMed  Google Scholar 

  32. Macmanus, D. B., A. Menichetti, B. Depreitere, N. Famaey, J. V. Sloten, and M. Gilchrist. Towards animal surrogates for characterising large strain dynamic mechanical properties of human brain tissue. Brain Multiphys. 1:100018, 2020.

    Article  Google Scholar 

  33. MacManus, D. B., J. G. Murphy, and M. D. Gilchrist. Mechanical characterisation of brain tissue up to 35% strain at 1, 10, and 100/s using a custom-built micro-indentation apparatus. J. Mech. Behav. Biomed. Mater. 87:256–266, 2018.

    Article  PubMed  Google Scholar 

  34. MacManus, D. B., B. Pierrat, J. G. Murphy, and M. D. Gilchrist. Mechanical characterization of the P56 mouse brain under large-deformation dynamic indentation. Sci. Rep. 6:21569, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. MacManus, D. B., B. Pierrat, J. G. Murphy, and M. D. Gilchrist. A viscoelastic analysis of the P56 mouse brain under large-deformation dynamic indentation. Acta Biomater. 48:309–318, 2017.

    Article  PubMed  Google Scholar 

  36. Marar, M., N. M. McIlvain, S. K. Fields, and R. D. Comstock. Epidemiology of concussions among United States high school athletes in 20 sports. Am. J. Sports Med. 40(4):747–755, 2012.

    Article  PubMed  Google Scholar 

  37. Nicolle, S., M. Lounis, R. Willinger, and J. F. Palierne. Shear linear behavior of brain tissue over a large frequency range. Biorheology. 42(3):209–223, 2005.

    CAS  PubMed  Google Scholar 

  38. Pathak, S., S. R. Kalidindi, C. Klemenz, and N. Orlovskaya. Analyzing indentation stress-strain response of LaGaO3 single crystals using spherical indenters. J. Eur. Ceram. Soc. 28(11):2213–2220, 2008.

    Article  CAS  Google Scholar 

  39. Pervin, F., and W. W. Chen. Dynamic mechanical response of bovine gray matter and white matter brain tissues under compression. J. Biomech. 42(6):731–735, 2009.

    Article  PubMed  Google Scholar 

  40. Prange, M. T., and S. S. Margulies. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124(2):244–252, 2002.

    Article  PubMed  Google Scholar 

  41. Rashid, B., M. Destrade, and M. D. Gilchrist. Mechanical characterization of brain tissue in tension at dynamic strain rates. J. Mech. Behav. Biomed. Mater. 33:43–54, 2014.

    Article  PubMed  Google Scholar 

  42. Takhounts, E. G., J. R. Crandall, and K. Darvish. On the importance of nonlinearity of brain tissue under large deformations. Stapp Car Crash J. 47:79, 2003.

    PubMed  Google Scholar 

  43. Thibault, K. L., and S. S. Margulies. Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J. Biomech. 31(12):1119–1126, 1998.

    Article  CAS  PubMed  Google Scholar 

  44. Van Dommelen, J., T. Van der Sande, M. Hrapko, and G. Peters. Mechanical properties of brain tissue by indentation: interregional variation. J. Mech. Behav. Biomed. Mater. 3(2):158–166, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. A.A. Sosunov at the Columbia University Medical Center and the patients for providing the human brain tissue samples. The authors acknowledge the computing resources from Columbia University's Shared Research Computing Facility project, which is supported by NIH Research Facility Improvement Grant 1G20RR030893-01, and associated funds from the New York State Empire State Development, Division of Science Technology and Innovation (NYSTAR) Contract C090171, both awarded on April 15, 2010. This study was supported in part by the National Highway Traffic Safety Administration (NHTSA) (Project No. DTNH22-08-C-00088), a grant from the Paul Allen Family Foundation, and funding from Honda Motor Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barclay Morrison III.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundaresh, S.N., Finan, J.D., Elkin, B.S. et al. Region-Dependent Viscoelastic Properties of Human Brain Tissue Under Large Deformations. Ann Biomed Eng 50, 1452–1460 (2022). https://doi.org/10.1007/s10439-022-02910-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02910-7

Keywords

Navigation