Skip to main content
Log in

Ex Vivo Model of Ischemic Mitral Regurgitation and Analysis of Adjunctive Papillary Muscle Repair

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Ischemic mitral regurgitation (IMR) is particularly challenging to repair with lasting durability due to the complex valvular and subvalvular pathologies resulting from left ventricular dysfunction. Ex vivo simulation is uniquely suited to quantitatively analyze the repair biomechanics, but advancements are needed to model the nuanced IMR disease state. Here we present a novel IMR model featuring a dilation device with precise dilatation control that preserves annular elasticity to enable accurate ex vivo analysis of surgical repair. Coupled with augmented papillary muscle head positioning, the enhanced heart simulator system successfully modeled IMR pre- and post-surgical intervention and enabled the analysis of adjunctive subvalvular papillary muscle repair to alleviate regurgitation recurrence. The model resulted in an increase in regurgitant fraction: 11.6 ± 1.7% to 36.1 ± 4.4% (p < 0.001). Adjunctive papillary muscle head fusion was analyzed relative to a simple restrictive ring annuloplasty repair and, while both repairs successfully eliminated regurgitation initially, the addition of the adjunctive subvalvular repair reduced regurgitation recurrence: 30.4 ± 5.7% vs. 12.5 ± 2.6% (p = 0.002). Ultimately, this system demonstrates the success of adjunctive papillary muscle head fusion in repairing IMR as well as provides a platform to optimize surgical techniques for increased repair durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. American Association for Thoracic Surgery Ischemic Mitral Regurgitation Consensus Guidelines Writing Committee, I. L. Kron, M. A. Acker, D. H. Adams, G. Ailawadi, S. F. Bolling, J. W. Hung, D. S. Lim, D. J. LaPar, M. J. Mack, P. T. O’Gara, M. K. Parides, and J. D. Puskas. 2015 The American Association for Thoracic Surgery Consensus Guidelines: Ischemic mitral valve regurgitation. J. Thorac. Cardiovasc. Surg. 151:940–956, 2016.

    Google Scholar 

  2. Athanasopoulos, L. V., R. P. Casula, P. P. Punjabi, Y. S. Abdullahi, and T. Athanasiou. A technical review of subvalvular techniques for repair of ischaemic mitral regurgitation and their associated echocardiographic and survival outcomes. Interact Cardiovasc. Thorac. Surg. 25:975–982, 2017.

    PubMed  Google Scholar 

  3. Bloodworth, C. H., E. L. Pierce, T. F. Easley, A. Drach, A. H. Khalighi, M. Toma, M. O. Jensen, M. S. Sacks, and A. P. Yoganathan. Ex vivo methods for informing computational models of the mitral valve. Ann. Biomed. Eng. 45:496–507, 2017.

    PubMed  Google Scholar 

  4. Bouma, W., C. Aoki, M. Vergnat, A. M. Pouch, S. R. Sprinkle, M. J. Gillespie, M. A. Mariani, B. M. Jackson, R. C. Gorman, and J. H. Gorman. Saddle-shaped annuloplasty improves leaflet coaptation in repair for ischemic mitral regurgitation. Ann. Thorac. Surg. 100:1360–1366, 2015.

    PubMed  PubMed Central  Google Scholar 

  5. Bouma, W., H. M. Willemsen, C. P. H. Lexis, N. H. Prakken, E. Lipsic, D. J. van Veldhuisen, M. A. Mariani, P. van der Harst, and I. C. C. van der Horst. Chronic ischemic mitral regurgitation and papillary muscle infarction detected by late gadolinium-enhanced cardiac magnetic resonance imaging in patients with ST-segment elevation myocardial infarction. Clin. Res. Cardiol. 105:981–991, 2016.

    PubMed  PubMed Central  Google Scholar 

  6. Carpentier, A., D. H. Adams, and F. Filsoufi. Carpentier’s Reconstructive Valve Surgery. Philadelphia, PA: Saunders, 2010.

    Google Scholar 

  7. Dal-Bianco, J. P., J. Beaudoin, M. D. Handschumacher, and R. A. Levine. Basic mechanisms of mitral regurgitation. Can. J. Cardiol. 30:971–981, 2014.

    PubMed  Google Scholar 

  8. DiBardino, D. J., A. W. ElBardissi, R. S. McClure, O. A. Razo-Vasquez, N. E. Kelly, and L. H. Cohn. Four decades of experience with mitral valve repair: analysis of differential indications, technical evolution, and long-term outcome. J. Thorac. Cardiovasc. Surg. 139:76–83, 2010. (discussion 83)

    PubMed  Google Scholar 

  9. Erek, E., M. Padala, K. Pekkan, J. Jimenez, Y. K. Yalçinba, E. Salihoğlu, T. Sarioğlu, and A. P. Yoganathan. Mitral web–a new concept for mitral valve repair: improved engineering design and in-vitro studies. J. Heart Valve Dis. 18:300–306, 2009.

    PubMed  Google Scholar 

  10. Fontaine, A. A., S. He, R. Stadter, J. T. Ellis, R. A. Levine, and A. P. Yoganathan. In vitro assessment of prosthetic valve function in mitral valve replacement with chordal preservation techniques. J. Heart Valve Dis. 5:186–198, 1996.

    CAS  PubMed  Google Scholar 

  11. Goldstone, A. B., and Y. J. Woo. Surgical treatment of the mitral valve. In: Sabiston & Spencer Surgery of the Chest, edited by F. W. Sellke, P. J. del Nido, and S. J. Swanson. Philadelphia, PA: Elsevier, 2015.

    Google Scholar 

  12. Hata, M., B. Fujita, K. Hakim-Meibodi, and J. F. Gummert. Papillary muscle heads focalization for functional mitral valve regurgitation. Ann. Thorac. Surg. 110:e59–e61, 2020.

    PubMed  Google Scholar 

  13. Hayashi, I., H. Kasahara, K. Abe, and N. Haijima. A papillary-ventricular complex repair technique for functional mitral regurgitation. Eur. J. Cardiothorac. Surg. 45:939–941, 2014.

    PubMed  Google Scholar 

  14. Imbrie-Moore, A. M., M. H. Park, M. J. Paulsen, M. Sellke, R. Kulkami, H. Wang, Y. Zhu, J. M. Farry, A. Bourdillon, C. Callinan, H. J. Lucian, C. E. Hironaka, and D. Deschamps. Biomimetic six-axis robots replicate human cardiac papillary muscle motion: pioneering the next generation of biomechanical heart simulator technology. J. R. Soc. Interface. 17(173):20200614, 2020.

    PubMed  PubMed Central  Google Scholar 

  15. Imbrie-Moore, A. M., C. C. Paullin, M. J. Paulsen, F. Grady, H. Wang, C. E. Hironaka, J. M. Farry, H. J. Lucian, and Y. J. Woo. A novel 3D-Printed preferential posterior mitral annular dilation device delineates regurgitation onset threshold in an ex vivo heart simulator. Med. Eng. Phys. 2020. https://doi.org/10.1016/j.medengphy.2020.01.005.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Imbrie-Moore, A. M., M. J. Paulsen, A. D. Thakore, H. Wang, C. E. Hironaka, H. J. Lucian, J. M. Farry, B. B. Edwards, J. H. Bae, M. R. Cutkosky, and Y. J. Woo. Ex vivo biomechanical study of apical versus papillary neochord anchoring for mitral regurgitation. Ann. Thorac. Surg. 108:90–97, 2019.

    PubMed  PubMed Central  Google Scholar 

  17. Imbrie-Moore, A. M., M. J. Paulsen, Y. Zhu, H. Wang, H. J. Lucian, J. M. Farry, J. W. MacArthur, M. Ma, and Y. J. Woo. A novel cross-species model of Barlow’s disease to biomechanically analyze repair techniques in an ex vivo left heart simulator. J. Thorac. Cardiovasc. Surg. 161:1776–1783, 2021.

    PubMed  Google Scholar 

  18. Imbrie-Moore, A. M., Y. Zhu, M. H. Park, M. J. Paulsen, H. Wang, and Y. J. Woo. Artificial papillary muscle device for off-pump transapical mitral valve repair. J. Thorac. Cardiovasc. Surg. 2020. https://doi.org/10.1016/j.jtcvs.2020.11.105.

    Article  PubMed  Google Scholar 

  19. International Standard. ISO 5840–1:2015 (E): Cardiovascular Implants: Cardiac Valve Prostheses. Geneva: ISO Copyright Office, 2015.

    Google Scholar 

  20. Ishikawa, S., K. Ueda, A. Kawasaki, K. Neya, and H. Suzuki. Papillary muscle sandwich plasty for ischemic mitral regurgitation: a new simple technique. J. Thorac. Cardiovasc. Surg. 135:1384–1386, 2008.

    PubMed  Google Scholar 

  21. Ishikawa, S., K. Ueda, K. Neya, A. Kawasaki, A. Kakinuma, H. Sakamoto, K. Kuwana, H. Nagatani, H. Otake, and S. Morita. Papillary muscle sandwich plasty for the treatment of functional mitral valve regurgitation. Int. Surg. 96:182–187, 2011.

    PubMed  Google Scholar 

  22. Jensen, H. Surgical treatment of functional ischemic mitral regurgitation. Dan. Med. J. 62(3):B4993, 2015.

    PubMed  Google Scholar 

  23. Jensen, M. O., H. Jensen, M. Smerup, R. A. Levine, A. P. Yoganathan, H. Nygaard, J. M. Hasenkam, and S. L. Nielsen. Saddle-shaped mitral valve annuloplasty rings experience lower forces compared with flat rings. Circulation. 118:S250–S255, 2008.

    PubMed  Google Scholar 

  24. Komeda, M., Y. Koyama, S. Fukaya, and H. Kitamura. Papillary heads “optimization” in repairing functional mitral regurgitation. J. Thorac. Cardiovasc. Surg. 144:1262–1264, 2012.

    PubMed  Google Scholar 

  25. Kron, I. L., J. Hung, J. R. Overbey, D. Bouchard, A. C. Gelijns, A. J. Moskowitz, P. Voisine, P. T. O’Gara, M. Argenziano, R. E. Michler, M. Gillinov, J. D. Puskas, J. S. Gammie, M. J. Mack, P. K. Smith, C. Sai-Sudhakar, T. J. Gardner, G. Ailawadi, X. Zeng, K. O’Sullivan, M. K. Parides, R. Swayze, V. Thourani, E. A. Rose, L. P. Perrault, M. A. Acker, and CTSN Investigators. Predicting recurrent mitral regurgitation after mitral valve repair for severe ischemic mitral regurgitation. J. Thorac. Cardiovasc. Surg. 149:752–61, 2015.

    PubMed  Google Scholar 

  26. Kwon, M. H., L. S. Lee, M. Cevasco, G. S. Couper, P. S. Shekar, L. H. Cohn, and F. Y. Chen. Recurrence of mitral regurgitation after partial versus complete mitral valve ring annuloplasty for functional mitral regurgitation. J. Thorac. Cardiovasc. Surg. 146:616–622, 2013.

    PubMed  Google Scholar 

  27. LaPar, D. J., and I. L. Kron. Should all ischemic mitral regurgitation be repaired? When should we replace? Curr. Opin. Cardiol. 26:113–117, 2011.

    PubMed  PubMed Central  Google Scholar 

  28. Lee, J. H., A. D. Rygg, E. M. Kolahdouz, S. Rossi, S. M. Retta, N. Duraiswamy, L. N. Scotten, B. A. Craven, and B. E. Griffith. Fluid-structure interaction models of bioprosthetic heart valve dynamics in an experimental pulse duplicator. Ann. Biomed. Eng. 48:1475–1490, 2020.

    PubMed  PubMed Central  Google Scholar 

  29. Magne, J., P. Pibarot, J. G. Dumesnil, and M. Sénéchal. Continued global left ventricular remodeling is not the sole mechanism responsible for the late recurrence of ischemic mitral regurgitation after restrictive annuloplasty. J. Am. Soc. Echocardiogr. 22:1256–1264, 2009.

    PubMed  Google Scholar 

  30. Meijerink, F., I. J. Wijdh-den Hamer, W. Bouma, A. M. Pouch, A. H. Aly, E. K. Lai, T. J. Eperjesi, M. A. Acker, P. A. Yushkevich, J. Hung, M. A. Mariani, K. R. Khabbaz, T. G. Gleason, F. Mahmood, J. H. Gorman, and R. C. Gorman. Intraoperative post-annuloplasty three-dimensional valve analysis does not predict recurrent ischemic mitral regurgitation. J. Cardiothorac. Surg. 15:161, 2020.

    PubMed  PubMed Central  Google Scholar 

  31. Mihos, C. G., E. Yucel, and O. Santana. The role of papillary muscle approximation in mitral valve repair for the treatment of secondary mitral regurgitation. Eur. J. Cardiothorac. Surg. 51:1023–1030, 2017.

    PubMed  Google Scholar 

  32. Nappi, F., S. S. Avatar Singh, O. Santana, and C. G. Mihos. Functional mitral regurgitation: an overview for surgical management framework. J. Thorac. Dis. 10:4540–4555, 2018.

    PubMed  PubMed Central  Google Scholar 

  33. Nappi, F., C. Spadaccio, M. Chello, and C. G. Mihos. Papillary muscle approximation in mitral valve repair for secondary MR. J. Thorac. Dis. 9:S635–S639, 2017.

    PubMed  PubMed Central  Google Scholar 

  34. Otto, C. M., R. A. Nishimura, R. O. Bonow, B. A. Carabello, J. P. Erwin, F. Gentile, H. Jneid, E. V. Krieger, M. Mack, C. McLeod, P. T. O’Gara, V. H. Rigolin, T. M. Sundt, A. Thompson, and C. Toly. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the american college of cardiology/american heart association joint committee on clinical practice guidelines. Circulation. 143:e72–e227, 2021.

    PubMed  Google Scholar 

  35. P-10, P-15 and P-20 Datasheetat. http://silicones-inc.com/datasheets/pseries/p20.pdf

  36. Padala, M., R. A. Hutchison, L. R. Croft, J. H. Jimenez, R. C. Gorman, J. H. Gorman, M. S. Sacks, and A. P. Yoganathan. Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet. Ann. Thorac. Surg. 88:1499–1504, 2009.

    PubMed  PubMed Central  Google Scholar 

  37. Padala, M., S. N. Powell, L. R. Croft, V. H. Thourani, A. P. Yoganathan, and D. H. Adams. Mitral valve hemodynamics after repair of acute posterior leaflet prolapse: quadrangular resection versus triangular resection versus neochordoplasty. J. Thorac. Cardiovasc. Surg. 138:309–315, 2009.

    PubMed  PubMed Central  Google Scholar 

  38. Paulsen, M. J., J. H. Bae, A. Imbrie-Moore, H. Wang, C. Hironaka, J. M. Farry, H. Lucian, A. Thakore, M. R. Cutkosky, and Y. J. Woo. Development and ex vivo validation of novel force-sensing neochordae for measuring chordae tendineae tension in the mitral valve apparatus using optical fibers with embedded Bragg gratings. J Biomech Eng. 2019. https://doi.org/10.1115/1.4044142.

    Article  PubMed Central  Google Scholar 

  39. Paulsen, M. J., A. M. Imbrie-Moore, C. E. Hironaka, H. J. Lucian, J. M. Farry, A. Thakore, P. Chiu, M. Ma, and Y. J. Woo. Comprehensive ex vivo biomechanical analysis of five clinically utilized operative approaches to reimplantation aortic valve-sparing root replacement. Circ. Res. 140(Suppl_1):A16336–A16336, 2019.

    Google Scholar 

  40. Paulsen, M. J., A. M. Imbrie-Moore, H. Wang, J. H. Bae, C. E. Hironaka, J. M. Farry, H. J. Lucian, A. D. Thakore, J. W. MacArthur, M. R. Cutkosky, and Y. J. Woo. Mitral chordae tendineae force profile characterization using a posterior ventricular anchoring neochordal repair model for mitral regurgitation in a three-dimensional-printed ex vivo left heart simulator. Eur. J. Cardiothorac. Surg. 57:535–544, 2020.

    PubMed  Google Scholar 

  41. Rausch, M. K., F. A. Tibayan, N. B. Ingels, D. C. Miller, and E. Kuhl. Mechanics of the mitral annulus in chronic ischemic cardiomyopathy. Ann. Biomed. Eng. 41:2171–2180, 2013.

    PubMed  PubMed Central  Google Scholar 

  42. Di Salvo, T. G., M. A. Acker, G. W. Dec, and J. G. Byrne. Mitral valve surgery in advanced heart failure. J. Am. Coll. Cardiol. 55:271–282, 2010.

    PubMed  Google Scholar 

  43. Scoville, D. H., and J. B. H. Boyd. A novel approach to ischemic mitral regurgitation (IMR). Ann. Cardiothorac. Surg. 4:443–448, 2015.

    PubMed  PubMed Central  Google Scholar 

  44. Siefert, A. W., J. H. Jimenez, K. J. Koomalsingh, D. S. West, F. Aguel, T. Shuto, R. C. Gorman, J. H. Gorman, and A. P. Yoganathan. Dynamic assessment of mitral annular force profile in an ovine model. Ann. Thorac. Surg. 94:59–65, 2012.

    PubMed  PubMed Central  Google Scholar 

  45. Siefert, A. W., J.-P.M. Rabbah, E. L. Pierce, K. S. Kunzelman, and A. P. Yoganathan. Quantitative evaluation of annuloplasty on mitral valve chordae tendineae forces to supplement surgical planning model development. Cardiovasc. Eng. Technol. 5:35–43, 2014.

    PubMed  PubMed Central  Google Scholar 

  46. Siefert, A. W., and R. L. Siskey. Bench models for assessing the mechanics of mitral valve repair and percutaneous surgery. Cardiovasc. Eng. Technol. 6:193–207, 2015.

    PubMed  Google Scholar 

  47. Timek, T. A., M. Malinowski, R. L. Hooker, J. L. Parker, C. L. Willekes, E. T. Murphy, T. Boeve, S. Leung, J. S. Fanning, and J. C. Heiser. Long-term outcomes of etiology specific annuloplasty ring repair of ischemic mitral regurgitation. Ann. Cardiothorac. Surg. 10:141–148, 2021.

    PubMed  PubMed Central  Google Scholar 

  48. Woo, Y. J., and J. W. MacArthur. Posterior ventricular anchoring neochordal repair of degenerative mitral regurgitation efficiently remodels and repositions posterior leaflet prolapse. Eur. J. Cardiothorac. Surg. 44:485–9, 2013. (discussion 489)

    PubMed  PubMed Central  Google Scholar 

  49. Zhan-Moodie, S., D. Xu, K. S. Suresh, Q. He, D. Onohara, K. Kalra, R. A. Guyton, E. L. Sarin, and M. Padala. Papillary muscle approximation reduces systolic tethering forces and improves mitral valve closure in the repair of functional mitral regurgitation. JTCVS Open. 2021. https://doi.org/10.1016/j.xjon.2021.04.008.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH R01 HL152155 and NIH R01 HL089315-01, YJW), the National Science Foundation Graduate Research Fellowship Program (DGE-1656518, AMI), a Stanford Graduate Fellowship (AMI), Thoracic Surgery Foundation Resident Research Fellowship (YZ), and the Stanford University Bio-X Initiative (TB). The authors thank the Rittenberg Family Foundation (Andy, Amy, Leon and Cindy) for their generous support of this research. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Joseph Woo.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 441 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imbrie-Moore, A.M., Zhu, Y., Bandy-Vizcaino, T. et al. Ex Vivo Model of Ischemic Mitral Regurgitation and Analysis of Adjunctive Papillary Muscle Repair. Ann Biomed Eng 49, 3412–3424 (2021). https://doi.org/10.1007/s10439-021-02879-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02879-9

Keywords

Navigation