Skip to main content

Advertisement

Log in

Biodegradable and Biocompatible 3D Constructs for Dental Applications: Manufacturing Options and Perspectives

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Designing 3D constructs with appropriate materials and structural frameworks for complex dental restorative/regenerative procedures has always remained a multi-criteria optimization challenge. In this regard, 3D printing has long been known to be a potent tool for various tissue regenerative applications, however, the preparation of biocompatible, biodegradable, and stable inks is yet to be explored and revolutionized for overall performance improvisation. The review reports the currently employed manufacturing processes for the development of engineered self-supporting, easily processable, and cost-effective 3D constructs with target-specific tuneable mechanics, bioactivity, and degradability aspects in the oral cavity for their potential use in numerous dental applications ranging from soft pulp tissues to hard alveolar bone tissues. A hybrid synergistic approach, comprising of development of multi-layered, structurally stable, composite building blocks with desired physicomechanical performance and bioactivity presents an optimal solution to circumvent the major limitations and develop new-age advanced dental restorations and implants. Further, the review summarizes some manufacturing perspectives which may inspire the readers to design appropriate structures for clinical trials so as to pave the way for their routine applications in dentistry in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3:
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. Abdelaziz, D., A. Hefnawy, E. Al-wakeel, A. El-fallal, and I. M. El-sherbiny. New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity. J. Adv. Res. 28:51–62, 2021.

    Article  CAS  PubMed  Google Scholar 

  2. Abdollahiyan, P., F. Oroojalian, M. Hejazi, M. de la Guardia, and A. Mokhtarzadeh. Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering. J. Control. Release. 333:391–417, 2021.

    Article  CAS  PubMed  Google Scholar 

  3. Abe, G. L., J. Sasaki, C. Katata, T. Kohno, R. Tsuboi, H. Kitagawa, and S. Imazato. Fabrication of novel poly(lactic acid/caprolactone) bilayer membrane for GBR application. Dent. Mater. 36:626–634, 2020.

    Article  CAS  PubMed  Google Scholar 

  4. Ahmadi, S., A. Hivechi, S. H. Bahrami, P. B. Milan, and S. S. Ashraf. Cinnamon extract loaded electrospun chitosan/gelatin membrane with antibacterial activity. Int. J. Biol. Macromol. 173:580–590, 2021.

    Article  CAS  PubMed  Google Scholar 

  5. Alghamdi, A. A., H. Alattas, W. S. Saeed, A. Al-Odayni, A. Alrahlah, and T. Aouak. Preparation and characterization of poly(ethylene-co-vinyl alcohol)/poly(ε-caprolactone) blend for bioscaffolding applications. Int. J. Mol. Sci. 21:5881, 2020.

    Article  CAS  PubMed Central  Google Scholar 

  6. Arbade, G. K., J. Srivastava, V. Tripathi, N. Lenka, and T. U. Patro. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering. J. Biomater. Sci. Polym. Ed. 31:1648–1670, 2020.

    Article  CAS  PubMed  Google Scholar 

  7. Arefin, A. M. E., N. R. Khatri, N. Kulkarni, and P. F. Egan. Polymer 3D printing review: materials, process, and design strategies for medical applications. Polymers (Basel). 13:1499, 2021.

    Article  CAS  Google Scholar 

  8. Azizabadi, O., F. Akbarzadeh, G. Sargazi, and N. P. S. Chauhan. Preparation of a novel ti-metal organic framework porous nanofiber polymer as an efficient dental nano-coating: physicochemical and mechanical properties. Polym. Plast. Technol. Eng. 60:734–743, 2021.

    CAS  Google Scholar 

  9. Balbinot, G. S., E. A. C. Bahlis, F. Visioli, V. C. B. Leitune, R. M. D. Soares, and F. M. Collares. Polybutylene-adipate-terephthalate and niobium-containing bioactive glasses composites: development of barrier membranes with adjusted properties for guided bone regeneration. Mater. Sci. Eng. C. 2021. https://doi.org/10.1016/j.msec.2021.112115.

    Article  Google Scholar 

  10. Bartnikowski, M., C. Vaquette, and S. Ivanovski. Workflow for highly porous resorbable custom 3D printed scaffolds using medical grade polymer for large volume alveolar bone regeneration. Clin. Oral. Impl. Res. 31:431–441, 2020.

    Article  Google Scholar 

  11. Bhatia, A., and A. K. Sehgal. Additive manufacturing materials, methods and applications: a review. Mater. Today Proc. 2021. https://doi.org/10.1016/j.matpr.2021.04.379.

    Article  Google Scholar 

  12. Bonadies, I., F. Di Cristo, A. Valentino, G. Peluso, A. Calarco, and A. Di Salle. Ph-responsive resveratrol-loaded electrospun membranes for the prevention of implant-associated infections. Nanomaterials. 10:1175, 2020.

    Article  CAS  PubMed Central  Google Scholar 

  13. Budai-Szűcs, M., A. Léber, L. Cui, M. Józó, P. Vályi, K. Burián, B. Kirschweng, E. Csányi, and B. Pukánszky. Electrospun PLA fibers containing metronidazole for periodontal disease. Drug Des. Devel. Ther. 14:233–242, 2020.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Cao, S., J. Han, N. Sharma, B. Msallem, W. Jeong, J. Son, C. Kunz, H. W. Kang, and F. M. Thieringer. In vitro mechanical and biological properties of 3D printed polymer composite and β-tricalcium phosphate scaffold on human dental pulp stem cells. Materials (Basel). 13:3057, 2020.

    Article  CAS  Google Scholar 

  15. Chang, P., H. Luo, Z. Lin, W. Tai, C. Chang, Y. Chang, D. L. Cochran, and M. Chen. ScienceDirect preclinical evaluation of a 3D-printed hydroxyapatite/poly(lactic-co-glycolic acid) scaffold for ridge augmentation. J. Formos. Med. Assoc. 120:1100–1107, 2021.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, I. H., T. M. Lee, and C. L. Huang. Biopolymers hybrid particles used in dentistry. Gels. 7:1–15, 2021.

    Article  CAS  Google Scholar 

  17. Chen, N., R. Ren, X. Wei, R. Mukundan, G. Li, X. Xu, G. Zhao, Z. Zhao, S. M. Lele, R. A. Reinhardt, and D. Wang. Thermoresponsive hydrogel-based local delivery of simvastatin for the treatment of periodontitis. Mol. Pharmaceutics. 18:1992–2003, 2021.

    Article  CAS  Google Scholar 

  18. Chin, S. Y., V. Dikshit, B. M. Priyadarshini, and Y. Zhang. Powder-based 3D printing for the fabrication of device with micro and mesoscale features. Micromachines. 11:658, 2020.

    Article  PubMed Central  Google Scholar 

  19. Chong, Y. T., C. S. H. Tan, L. Y. Liu, J. Liu, C. P. Teng, and F. K. Wang. Enhanced dispersion of hydroxyapatite whisker in orthopedics 3D printing resin with improved mechanical performance. J. Appl. Polym. Sci. 138:e50811, 2021.

    Article  CAS  Google Scholar 

  20. Craciunescu, O., A. Seciu, and O. Zarnescu. In vitro and in vivo evaluation of a biomimetic scaffold embedding silver nanoparticles for improved treatment of oral lesions. Mater. Sci. Eng. C. 123:112015, 2021.

    Article  CAS  Google Scholar 

  21. D’Avanzo, N., M. C. Bruno, A. Giudice, A. Mancuso, F. de Gaetano, M. C. Cristiano, D. Paolino, and M. Fresta. Influence of materials properties on bio-physical features and effectiveness of 3D-scaffolds for periodontal regeneration. Molecules. 26:1643, 2021.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Daghrery, A., Z. Aytac, N. Dubey, L. Mei, A. Schwendeman, and M. C. Bottino. Electrospinning of dexamethasone/cyclodextrin inclusion complex polymer fibers for dental pulp therapy. Colloids Surfaces B Biointerfaces. 191:111011, 2020.

    Article  CAS  PubMed  Google Scholar 

  23. de Menezes, B. R. C., T. L. A. Montanheiro, A. G. Sampaio, C. Y. Koga-Ito, G. P. Thim, and L. S. Montagna. PCL/β-AgVO3 nanocomposites obtained by solvent casting as potential antimicrobial biomaterials. J. Appl. Polym. Sci. 138:e50130, 2021.

    Article  CAS  Google Scholar 

  24. Demiralp, E., G. Doğru, and H. Yılmaz. Additive manufacturing (3D PRINTING) methods and applications in dentistry. Clin. Exp. Health Sci. 11:182–190, 2021.

    Google Scholar 

  25. Dissanayaka, W. L., and C. Zhang. Scaffold-based and scaffold-free strategies in dental pulp regeneration. J. Endod. 46:S81–S89, 2020.

    Article  PubMed  Google Scholar 

  26. Dommisch, H., K. N. Stolte, J. Jager, K. Vogel, R. Müller, S. Hedtrich, M. Unbehauen, R. Haag, and K. Danker. Characterization of an ester-based core-multishell (CMS) nanocarrier for the topical application at the oral mucosa. Clin. Oral Investig. 2021. https://doi.org/10.1007/s00784-021-03884-x.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Du, M., J. Chen, K. Liu, H. Xing, and C. Song. Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Compos. Part B Eng. 215:108790, 2021.

    Article  CAS  Google Scholar 

  28. Dutta, S. D., D. K. Patel, B. Jin, S. Il Choi, O. H. Lee, and K. T. Lim. Effects of Cirsium setidens (Dunn) Nakai on the osteogenic differentiation of stem cells. Mol. Med. Rep. 23:264, 2021.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Edmans, J. G., K. H. Clitherow, C. Murdoch, P. V. Hatton, S. G. Spain, and H. E. Colley. Mucoadhesive electrospun fibre-based technologies for oral medicine. Pharmaceutics. 12:504, 2020.

    Article  CAS  PubMed Central  Google Scholar 

  30. Edmans, J. G., C. Murdoch, M. E. Santocildes-Romero, P. V. Hatton, H. E. Colley, and S. G. Spain. Incorporation of lysozyme into a mucoadhesive electrospun patch for rapid protein delivery to the oral mucosa. Mater. Sci. Eng. C. 112:110917, 2020.

    Article  CAS  Google Scholar 

  31. El-Fiqi, A., and H. W. Kim. Nano/micro-structured poly(ε-caprolactone)/gelatin nanofibers with biomimetically-grown hydroxyapatite spherules: high protein adsorption, controlled protein delivery and sustained bioactive ions release designed as a multifunctional bone regenerative membrane. Ceram. Int. 2021. https://doi.org/10.1016/j.ceramint.2021.04.003.

    Article  Google Scholar 

  32. Elango, J., P. R. Selvaganapathy, G. Lazzari, B. Bao, and W. Wenhui. Biomimetic collagen-sodium alginate-titanium oxide (TiO2) 3D matrix supports differentiated periodontal ligament fibroblasts growth for periodontal tissue regeneration. Int. J. Biol. Macromol. 163:9–18, 2020.

    Article  CAS  PubMed  Google Scholar 

  33. Elkaiam, L. E., O. Hakimi, G. Yosafovich-Doitch, S. Ovadia, and E. Aghion. In vivo evaluation of Mg–5% Zn–2% Nd alloy as an innovative biodegradable implant material. Ann. Biomed. Eng. 48:380–392, 2020.

    Article  CAS  PubMed  Google Scholar 

  34. Eshkalak, S., E. Rezvani Ghomi, Y. Dai, D. Choudhury, and S. Ramakrishna. The role of three-dimensional printing in healthcare and medicine. Mater. Des. 194:108940, 2020.

    Article  CAS  Google Scholar 

  35. EzEldeen, M., J. Loos, Z. Mousavi Nejad, M. Cristaldi, D. Murgia, A. Braem, and R. Jacobs. 3D-printing-assisted fabrication of chitosan scaffolds from different sources and cross-linkers for dental tissue engineering. Eur. Cell. Mater. 41:485–501, 2021.

    Article  CAS  PubMed  Google Scholar 

  36. Fakhri, E., H. Eslami, P. Maroufi, F. Pakdel, S. Taghizadeh, K. Ganbarov, M. Yousefi, A. Tanomand, B. Yousefi, S. Mahmoudi, and H. S. Kafil. Chitosan biomaterials application in dentistry. Int. J. Biol. Macromol. 162:956–974, 2020.

    Article  CAS  PubMed  Google Scholar 

  37. Farzaneh, S., S. Hosseinzadeh, R. Samanipour, S. Hatamie, J. Ranjbari, and A. Khojasteh. Fabrication and characterization of cobalt ferrite magnetic hydrogel combined with static magnetic field as a potential bio-composite for bone tissue engineering. J. Drug Deliv. Sci. Technol. 2021. https://doi.org/10.1016/j.jddst.2021.102525.

    Article  Google Scholar 

  38. Ferreira, L. F. M., D. V. Thomaz, M. P. F. Duarte, R. F. V. Lopez, V. Pedrazzi, O. de Freitas, and R. O. do Couto. Quality by Design-driven investigation of the mechanical properties of mucoadhesive films for needleless anesthetics administration. Rev. Ciênc. Farm. Básica Apl. 42:1–12, 2021.

    Article  Google Scholar 

  39. Fuchs, A., A. Youssef, A. Seher, S. Hartmann, R. C. Brands, U. D. A. Müller-Richter, A. C. Kübler, and C. Linz. A new multilayered membrane for tissue engineering of oral hard- and soft tissue by means of melt electrospinning writing and film casting—an in vitro study. J. Cranio-Maxillofacial Surg. 47:695–703, 2019.

    Article  Google Scholar 

  40. Gadalla, D., and A. S. Goldstein. Improving the osteogenicity of PCL fiber substrates by surface-immobilization of bone morphogenic protein-2. Ann. Biomed. Eng. 48:1006–1015, 2020.

    Article  PubMed  Google Scholar 

  41. Gendviliene, I., E. Simoliunas, M. Alksne, S. Dibart, E. Jasiuniene, V. Cicenas, R. Jacobs, V. Bukelskiene, and V. Rutkunas. Effect of extracellular matrix and dental pulp stem cells on bone regeneration with 3D printed PLA/HA composite scaffolds. Eur. Cell Mater. 41:204–215, 2021.

    Article  CAS  PubMed  Google Scholar 

  42. Granz, C. L., and A. Gorji. Dental stem cells: the role of biomaterials and scaffolds in developing novel therapeutic strategies. World J. Stem Cells. 12:897–921, 2020.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Han, J., W. Jeong, M. K. Kim, S. H. Nam, E. K. Park, and H. W. Kang. Demineralized dentin matrix particle-based bio-ink for patient-specific shaped 3d dental tissue regeneration. Polymers (Basel). 13:1294, 2021.

    Article  CAS  Google Scholar 

  44. Han, Y., Q. Wei, P. Chang, K. Hu, O. V. Okoro, A. Shavandi, and L. Nie. Three-dimensional printing of hydroxyapatite composites for biomedical application. Crystals. 11:353, 2021.

    Article  CAS  Google Scholar 

  45. Jain, P., A. Garg, U. Farooq, A. K. Panda, M. Aamir, A. Noureldeen, H. Darwish, and Z. Iqbal. Saudi Journal of Biological Sciences Preparation and quality by design assisted (Qb-d) optimization of bioceramic loaded microspheres for periodontal delivery of doxycycline hyclate. Saudi J. Biol. Sci. 28:2677–2685, 2021.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Jain, K., R. Shukla, A. Yadav, R. R. Ujjwal, and S. J. S. Flora. 3D printing in development of nanomedicines. Nanomaterials. 11:420, 2021.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Jazayeri, H. E., S. M. Lee, L. Kuhn, F. Fahimipour, M. Tahriri, and L. Tayebi. Polymeric scaffolds for dental pulp tissue engineering: a review. Dent. Mater. 36:e47–e58, 2020.

    Article  CAS  PubMed  Google Scholar 

  48. Jia, L., Z. Yang, L. Sun, Q. Zhang, Y. Guo, Y. Chen, Y. Dai, and Y. Xia. Materials Science & Engineering C A three-dimensional-printed SPION/PLGA scaffold for enhanced palate-bone regeneration and concurrent alteration of the oral microbiota in rats. Mater. Sci. Eng. C Mater. 126:112173, 2021.

    Article  CAS  Google Scholar 

  49. Jitpibull, J., T. Vongsetskul, H. Sritanaudomchai, and N. Tangjit. Surface-functionalized electrospun polycaprolactone fiber for culturing stem cell from human exfoliated deciduous teeth culture. Fibers Polym. 21:2215–2223, 2020.

    Article  CAS  Google Scholar 

  50. Kadambi, P., P. Luniya, and P. Dhatrak. Current advancements in polymer/polymer matrix composites for dental implants: a systematic review. Mater. Today Proc. 46:740–745, 2021.

    Article  CAS  Google Scholar 

  51. Kafri, A., S. Ovadia, G. Yosafovich-Doitch, and E. Aghion. The effects of 4% Fe on the performance of pure zinc as biodegradable implant material. Ann. Biomed. Eng. 47:1400–1408, 2019.

    Article  PubMed  Google Scholar 

  52. Karhula, S. S., M. A. J. Finnilä, S. J. O. Rytky, D. M. Cooper, J. Thevenot, M. Valkealahti, K. P. H. Pritzker, M. Haapea, A. Joukainen, P. Lehenkari, H. Kröger, R. K. Korhonen, H. J. Nieminen, and S. Saarakkala. Quantifying subresolution 3D morphology of bone with clinical computed tomography. Ann. Biomed. Eng. 48:595–605, 2020.

    Article  CAS  PubMed  Google Scholar 

  53. Khorsandi, D., A. Fahimipour, P. Abasian, S. S. Saber, M. Seyedi, S. Ghanavati, A. Ahmad, A. A. De Stephanis, F. Taghavinezhaddilami, A. Leonova, R. Mohammadinejad, M. Shabani, B. Mazzolai, V. Mattoli, F. R. Tay, and P. Makvandi. 3D and 4D printing in dentistry and maxillofacial surgery: printing techniques, materials, and applications. Acta Biomater. 122:26–49, 2021.

    Article  CAS  PubMed  Google Scholar 

  54. Kim, E. V., Y. S. Petronyuk, N. A. Guseynov, S. V. Tereshchuk, A. A. Popov, A. V. Volkov, V. N. Gorshenev, A. A. Olkhov, V. M. Levin, A. B. Dymnikov, V. E. Rodionov, G. A. Tumanyan, S. G. Ivashkevich, A. P. Bonartsev, and L. L. Borozdkin. Biocompatibility and bioresorption of 3D-printed polylactide and polyglycolide tissue membranes. Bull. Exp. Biol. Med. 170:356–359, 2021.

    Article  CAS  PubMed  Google Scholar 

  55. Kirby, B., J. M. Kenkel, A. Y. Zhang, B. Amirlak, and T. M. Suszynski. Three-dimensional (3D ) synthetic printing for the manufacture of non-biodegradable models, tools and implants used in surgery: a review of current methods. J. Med. Eng. Technol. 45:14–21, 2021.

    Article  PubMed  Google Scholar 

  56. Kumar, R., M. Kumar, and J. S. Chohan. The role of additive manufacturing for biomedical applications: a critical review. J. Manuf. Process. 64:828–850, 2021.

    Article  Google Scholar 

  57. Kurakula, M., and G. S. N. Koteswara Rao. Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. Eur. Polym. J. 136:109919, 2020.

    Article  CAS  Google Scholar 

  58. Li, P., Y. Li, T. Kwok, T. Yang, C. Liu, W. Li, and X. Zhang. A bi-layered membrane with micro-nano bioactive glass for guided bone regeneration. Colloids Surf B Biointerfaces. 205:1118, 2021.

    Article  Google Scholar 

  59. Lian, M., Y. Han, B. Sun, L. Xu, X. Wang, B. Ni, W. Jiang, Z. Qiao, K. Dai, and X. Zhang. A multifunctional electrowritten bi-layered scaffold for guided bone regeneration. Acta Biomater. 118:83–99, 2020.

    Article  CAS  PubMed  Google Scholar 

  60. Lim, J. W., K.-J. Jang, H. Son, S. Park, J. E. Kim, H. B. Kim, H. Seonwoo, Y.-H. Choung, M. C. Lee, and J. H. Chung. Aligned nanofiber-guided bone regeneration barrier incorporated with equine bone-derived hydroxyapatite for alveolar bone regeneration. Polymers (Basel). 13:60, 2021.

    Article  CAS  Google Scholar 

  61. Lin, Y. C., S. C. S. Hu, P. H. Huang, T. C. Lin, and F. L. Yen. Electrospun resveratrol-loaded polyvinylpyrrolidone/cyclodextrin nanofibers and their biomedical applications. Pharmaceutics. 12:552, 2020.

    Article  CAS  PubMed Central  Google Scholar 

  62. Liu, X., X. He, D. Jin, S. Wu, H. Wang, M. Yin, A. Aldalbahi, M. El-Newehy, X. Mo, and J. Wu. A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration. Acta Biomater. 108:207–222, 2020.

    Article  CAS  PubMed  Google Scholar 

  63. Liu, Y., X. Liang, R. Zhang, W. Lan, and W. Qin. Fabrication of electrospun polylactic acid/Cinnamaldehyde/β-cyclodextrin fibers as an antimicrobialwound dressing. Polymers (Basel). 9:464, 2017.

    Article  CAS  Google Scholar 

  64. Liu, X., W. Zhang, Y. Wang, Y. Chen, J. Xie, J. Su, and C. Huang. One-step treatment of periodontitis based on a core-shell micelle-in- nanofiber membrane with time-programmed drug release. J. Control. Release. 320:201–213, 2020.

    Article  CAS  PubMed  Google Scholar 

  65. Lu, S., X. Ren, T. Guo, Z. Cao, H. Sun, C. Wang, F. Wang, Z. Shu, J. Hao, S. Gui, C. Lei, and J. Zhang. Controlled release of iodine from cross-linked cyclodextrin metal-organic frameworks for prolonged periodontal pocket therapy. Carbohydr. Polym. 267:1181, 2021.

    Article  CAS  Google Scholar 

  66. Makvandi, P., U. Josic, M. Delfi, F. Pinelli, V. Jahed, E. Kaya, M. Ashrafizadeh, A. Zarepour, F. Rossi, A. Zarrabi, T. Agarwal, E. N. Zare, M. Ghomi, T. K. Maiti, L. Breschi, and F. R. Tay. Drug delivery (nano)platforms for oral and dental applications: tissue regeneration, infection control, and cancer management. Adv. Sci. 8:2004014, 2021.

    Article  CAS  Google Scholar 

  67. Mohandesnezhad, S., E. Alizadeh, Y. Pilehvar-Soltanahmadi, S. Davaran, A. Goodarzi, M. Khatamian, N. Zarghami, M. Samiei, M. Aghazadeh, and A. Akbarzadeh. In vitro evaluation of novel zeolite-hydroxyapatite blended scaffold for dental tissue engineering. Mater. Chem. Phys. 252:123152, 2020.

    Article  CAS  Google Scholar 

  68. Münchow, E. A., A. F. da Silva, E. Piva, C. E. Cuevas-Suárez, M. T. P. de Albuquerque, R. Pinal, R. L. Gregory, L. Breschi, and M. C. Bottino. Development of an antibacterial and anti-metalloproteinase dental adhesive for long-lasting resin composite restorations. J. Mater. Chem. B. 8:10797–10811, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Muthukrishnan, L. Imminent antimicrobial bioink deploying cellulose, alginate, EPS and synthetic polymers for 3D bioprinting of tissue constructs. Carbohydr. Polym. 260:117774, 2021.

    Article  CAS  PubMed  Google Scholar 

  70. Mutuk, T., and M. Gürbüz. Graphene/chitosan/Ag+-doped hydroxyapatite triple composite fiber coatings on new generation hybrid titanium composite by electrospinning. J. Compos. Mater. 2021. https://doi.org/10.1177/00219983211007544.

    Article  Google Scholar 

  71. Nasser, S., M. Ibrahim, and Y. Atassi. Hemostatic wound dressings based on drug loaded electrospun PLLA nanofibrous mats. Mater. Chem. Phys. 267:124686, 2021.

    Article  CAS  Google Scholar 

  72. Nesic, D., S. Durual, L. Marger, M. Mekki, I. Sailer, and S. S. Scherrer. Could 3D printing be the future for oral soft tissue regeneration? Bioprinting. 20:e00100, 2020.

    Article  Google Scholar 

  73. Noureldin, M. G., and N. Y. Dessoky. 3D printing: towards the future of oral and maxillofacial surgery. Acta Sci. Dent. Scienecs. 4:107–112, 2020.

    Article  Google Scholar 

  74. Okonogi, S., A. Kaewpinta, T. Rades, A. Müllertz, M. Yang, S. Khongkhunthian, and P. Chaijareenont. Enhancing stability and tooth bleaching activity of carbamide peroxide by electrospun nanofibrous film. Pharmaceuticals. 13:381, 2020.

    Article  CAS  PubMed Central  Google Scholar 

  75. Olaru, M., L. Sachelarie, and G. Calin. Hard dental tissues regeneration—approaches and challenges. Materials (Basel). 14:2558, 2021.

    Article  Google Scholar 

  76. Ovsianikov, A., A. Khademhosseini, and V. Mironov. The synergy of scaffold-based and scaffold-free tissue engineering strategies. Trends Biotechnol. 36:348–357, 2018.

    Article  CAS  PubMed  Google Scholar 

  77. Özcan, M., D. Hotza, M. C. Fredel, A. Cruz, and C. A. M. Volpato. Materials and manufacturing techniques for polymeric and ceramic scaffolds used in implant dentistry. J. Compos. Sci. 5:78, 2021.

    Article  CAS  Google Scholar 

  78. Park, J. S., S. J. Lee, H. H. Jo, J. H. Lee, W. D. Kim, J. Y. Lee, and S. A. Park. Fabrication and characterization of 3D-printed bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering. J. Ind. Eng. Chem. 46:175–181, 2017.

    Article  CAS  Google Scholar 

  79. Park, S. A., H. J. Lee, K. S. Kim, S. J. Lee, J. T. Lee, S. Y. Kim, N. H. Chang, and S. Y. Park. In vivo evaluation of 3D-printed polycaprolactone scaffold implantation combined with β-TCP powder for alveolar bone augmentation in a beagle defect model. Materials (Basel). 11:238, 2018.

    Article  CAS  Google Scholar 

  80. Park, J., S. Park, J. E. Kim, K.-J. Jang, H. Seonwoo, and J. H. Chung. Enhanced osteogenic differentiation of periodontal ligament stem cells using a graphene oxide-coated poly(ε-caprolactone) scaffold. Polymers (Basel). 13:797, 2021.

    Article  CAS  Google Scholar 

  81. Parveen, S., M. Sultan, M. I. Sajid, F. Jubeen, S. Parveen, I. Bibi, and Y. Safa. Synthesis and characterization of biodegradable and cytocompatible polyurethane-bovine-derived hydroxyapatite biomaterials. Polym. Bull. 2021. https://doi.org/10.1007/s00289-021-03622-z.

    Article  Google Scholar 

  82. Peng, W., S. Ren, Y. Zhang, R. Fan, Y. Zhou, L. Li, X. Xu, and Y. Xu. MgO nanoparticles-incorporated PCL/gelatin-derived coaxial electrospinning nanocellulose membranes for periodontal tissue regeneration. Front. Bioeng. Biotechnol. 9:6684, 2021.

    Article  Google Scholar 

  83. Poomathi, N., S. Singh, C. Prakash, A. Subramanian, R. Sahay, A. Cinappan, and S. Ramakrishna. 3D printing in tissue engineering: a state of the art review of technologies and biomaterials. Rapid Prototyp. J. 26:1313–1334, 2020.

    Article  Google Scholar 

  84. Porta, M., C. Tonda-Turo, D. Pierantozzi, G. Ciardelli, and E. Mancuso. Towards 3d multi-layer scaffolds for periodontal tissue engineering applications: addressing manufacturing and architectural challenges. Polymers (Basel). 12:2233, 2020.

    Article  CAS  Google Scholar 

  85. Pouponneau, P., O. Perrey, C. Brunon, C. Grossiord, N. Courtois, V. Salles, and A. Alves. Electrospun bioresorbable membrane eluting chlorhexidine for dental implants. Polymers (Basel). 12:66, 2020.

    Article  CAS  Google Scholar 

  86. Pradeepkumar, C., S. Karthikeyan, N. Rajini, S. Budholiya, and S. A. Raj. A contemporary review on additive manufactured biomedical implants. Mater. Today Proc. 2021. https://doi.org/10.1016/j.matpr.2021.04.184.

    Article  Google Scholar 

  87. Pugliese, R., B. Beltrami, S. Regondi, and C. Lunetta. Polymeric biomaterials for 3D printing in medicine: an overview. Ann. 3D Print. Med. 2:100011, 2021.

    Article  Google Scholar 

  88. Pulate, A. J., R. S. Shendge, S. R. Pandit, P. S. Shinde, and V. Pathare. Design and development of clindamycin film for periodontal disease. Turk. J. Physiother. Rehabil. 32:3307–3317, 2021.

    Google Scholar 

  89. Raju, R., M. Oshima, M. Inoue, T. Morita, Y. Huijiao, A. Waskitho, O. Baba, M. Inoue, and Y. Matsuka. Three-dimensional periodontal tissue regeneration using a bone-ligament complex cell sheet. Sci. Rep. 10:1656, 2020.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Ren, S., Y. Zhou, R. Fan, W. Peng, and X. Xu. Constructing biocompatible MSN@Ce@PEG nanoplatform for enhancing regenerative capability of stem cell via ROS-scavenging in periodontitis. Chem. Eng. J. 423:130207, 2021.

    Article  CAS  Google Scholar 

  91. Ribeiro, L. N. M., M. Franz-Montan, A. C. S. Alcântara, M. C. Breitkreitz, S. R. Castro, V. A. Guilherme, B. V. Muniz, G. H. Rodrigues da Silva, and E. de Paula. Hybrid nanofilms as topical anesthetics for pain-free procedures in dentistry. Sci. Rep. 10:113, 2020.

    Article  CAS  Google Scholar 

  92. Safi, I. N., A. M. Al-Shammari, M. A. Ul-Jabbar, and B. M. A. Hussein. Preparing polycaprolactone scaffolds using electrospinning technique for construction of artificial periodontal ligament tissue. J. Taibah Univ. Med. Sci. 15:363–373, 2020.

    PubMed Central  PubMed  Google Scholar 

  93. Samiei, M., M. Fathi, J. Barar, N. Fathi, N. Amiryaghoubi, and Y. Omidi. Bioactive hydrogel-based scaffolds for the regeneration of dental pulp tissue. J. Drug Deliv. Sci. Technol. 64:102600, 2021.

    Article  CAS  Google Scholar 

  94. Sanaei-rad, P., D. Jamshidi, M. Adel, and E. Seyedjafari. Electrospun poly(L-lactide) nanofibers coated with mineraltrioxide aggregate enhance odontogenic differentiation ofdental pulp stem cells. Polym. Adv. Technol. 32:402–410, 2020.

    Article  CAS  Google Scholar 

  95. Senarat, S., W. Wai, J. Mahadlek, and T. Phaechamud. Doxycycline hyclate-loaded in situ forming gels composed from bleached shellac, Ethocel, and Eudragit RS for periodontal pocket delivery. Saudi Pharm. J. 29:252–263, 2021.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Shang, L., Z. Liu, B. Ma, J. Shao, B. Wang, C. Ma, and S. Ge. Dimethyloxallyl glycine/nanosilicates-loaded osteogenic/angiogenic difunctional fibrous structure for functional periodontal tissue regeneration. Bioact. Mater. 6:1175–1188, 2021.

    Article  CAS  PubMed  Google Scholar 

  97. Sharma, D., S. Goel, J. Jacob, and B. K. Satapathy. Synthesis, optimal fabrication, and physico-mechanical property evaluation of PCL-b-PLLA diblock copolymer-based nanoscale roughness textured electrospun mats. Macromol. Mater. Eng. 2021. https://doi.org/10.1002/mame.202100226.

    Article  Google Scholar 

  98. Sharma, D., D. Saha, and B. K. Satapathy. Structurally optimized suture resistant polylactic acid (PLA)/poly (є-caprolactone) (PCL) blend based engineered nanofibrous mats. J. Mech. Behav. Biomed. Mater. 116:104331, 2021.

    Article  CAS  PubMed  Google Scholar 

  99. Sharma, D., and B. K. Satapathy. Mechanical properties of aliphatic polyester-based structurally engineered composite patches. Macromol. Symp. 384:1800153, 2019.

    Article  CAS  Google Scholar 

  100. Sharma, D., and B. K. Satapathy. Performance evaluation of electrospun nanofibrous mats of polylactic acid (PLA)/poly (ε-caprolactone) (PCL) blends. Mater. Today Proc. 19:188–195, 2019.

    Article  CAS  Google Scholar 

  101. Sharma, D., and B. K. Satapathy. Optimization and physical performance evaluation of electrospun nanofibrous mats of PLA, PCL and their blends. J. Ind. Text. 2020. https://doi.org/10.1177/1528083720944502.

    Article  Google Scholar 

  102. Sharma, D., and B. K. Satapathy. Physicomechanical performance and encapsulation efficiency of β-cyclodextrin loaded functional electrospun mats based on aliphatic polyesters and their blends. J. Biomater. Sci. Polym. Ed. 2021. https://doi.org/10.1080/09205063.2021.1925393.

    Article  PubMed  Google Scholar 

  103. Sharma, D., and B. K. Satapathy. Fabrication of optimally controlled electrosprayed polymer-free nano-particles of curcumin/β-cyclodextrin inclusion complex. Colloids Surf. A Physicochem. Eng. Asp. 618:126504, 2021.

    Article  CAS  Google Scholar 

  104. Sharma, D., and B. K. Satapathy. Understanding release kinetics and collapse proof suture retention response of curcumin loaded electrospun mats based on aliphatic polyesters and their blends. J. Mech. Behav. Biomed. Mater. 120:104556, 2021.

    Article  CAS  PubMed  Google Scholar 

  105. Sharma, D., and B. K. Satapathy. Optimally controlled morphology and physico- mechanical properties of inclusion complex loaded electrospun polyvinyl alcohol based nanofibrous mats for therapeutic applications. J. Biomater. Sci. Polym. Ed. 32:1182–1202, 2021.

    Article  CAS  PubMed  Google Scholar 

  106. Shen, Z., S. Kuang, Y. Zhang, M. Yang, W. Qin, X. Shi, and Z. Lin. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism. Bioact. Mater. 5:1113–1126, 2020.

    Article  PubMed Central  PubMed  Google Scholar 

  107. Shoba, E., R. Lakra, M. S. Kiran, and P. S. Korrapati. 3 D nano bilayered spatially and functionally graded scaffold impregnated bromelain conjugated magnesium doped hydroxyapatite nanoparticle for periodontal regeneration. J. Mech. Behav. Biomed. Mater. 109:103822, 2020.

    Article  CAS  PubMed  Google Scholar 

  108. Sohrabi, A., M. Hosseini, M. F. Abazari, S. Zare Karizi, S. A. Sadeghi Oskouei, N. Hajati-Birgani, F. Karimi Hafshejani, S. A. R. Hashemi, M. Rahmati, and M. Askari. Wnt pathway activator delivery by poly (lactide-co-glycolide)/silk fibroin composite nanofibers promotes dental pulp stem cell osteogenesis. J. Drug Deliv. Sci. Technol. 61:102223, 2021.

    Article  CAS  Google Scholar 

  109. Sordi, M. B., A. Cruz, M. C. Fredel, R. Magini, and P. T. Sharpe. Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry. Mater. Sci. Eng. C. 124:112055, 2021.

    Article  CAS  Google Scholar 

  110. Sta. Agueda, J. R. H., Q. Chen, R. D. Maalihan, J. Ren, Í. G. M. de Silva, N. P. Dugos, E. B. Caldona, and R. C. Advincula. 3D printing of biomedically relevant polymer materials and biocompatibility. MRS Commun. 11:197–212, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Su, H., T. Fujiwara, K. M. Anderson, A. Karydis, M. N. Ghadri, and J. D. Bumgardner. A comparison of two types of electrospun chitosan membranes and a collagen membrane in vivo. Dent. Mater. 37:60–70, 2021.

    Article  CAS  PubMed  Google Scholar 

  112. Suchý, T., L. Vištejnová, M. Šupová, P. Klein, M. Bartoš, Y. Kolinko, T. Blassová, Z. Tonar, M. Pokorný, Z. Sucharda, M. Žaloudková, F. Denk, R. Ballay, Š Juhás, J. Juhásová, E. Klapková, L. Horný, R. Sedláček, T. Grus, Z. Čejka, Z. Čejka, K. Chudějová, and J. Hrabák. Vancomycin-loaded collagen/hydroxyapatite layers electrospun on 3D printed titanium implants prevent bone destruction associated with S epidermidis infection and enhance osseointegration. Biomedicines. 9:531, 2021.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Tejo-Otero, A., I. Buj-Corral, and F. Fenollosa-Artés. 3D printing in medicine for preoperative surgical planning: a review. Ann. Biomed. Eng. 48:536–555, 2020.

    Article  CAS  PubMed  Google Scholar 

  114. Tian, Y., M. Liu, Y. Liu, C. Shi, Y. Wang, T. Liu, Y. Huang, P. Zhong, J. Dai, and X. Liu. The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique. J. Biomed. Mater. Res. Part A. 109:1209–1219, 2021.

    Article  CAS  Google Scholar 

  115. Toledano-Osorio, M., F. J. Manzano-Moreno, M. Toledano, R. Osorio, A. L. Medina-Castillo, V. J. Costela-Ruiz, and C. Ruiz. Doxycycline-doped membranes induced osteogenic gene expression on osteoblastic cells. J. Dent. 109:103676, 2021.

    Article  CAS  PubMed  Google Scholar 

  116. Touré, A. B. R., E. Mele, and J. K. Christie. Multi-layer scaffolds of poly(Caprolactone), poly(glycerol sebacate) and bioactive glasses manufactured by combined 3d printing and electrospinning. Nanomaterials. 10:626, 2020.

    Article  PubMed Central  CAS  Google Scholar 

  117. Vanaei, S., M. S. Parizi, S. Vanaei, F. Salemizadehparizi, and H. R. Vanaei. An overview on materials and techniques in 3D bioprinting toward biomedical application. Eng. Regen. 2:1–18, 2021.

    Google Scholar 

  118. Vaquette, C., J. Mitchell, T. Fernandez-Medina, S. Kumar, and S. Ivanovski. Resorbable additively manufactured scaffold imparts dimensional stability to extraskeletally regenerated bone. Biomaterials. 269:120671, 2021.

    Article  CAS  PubMed  Google Scholar 

  119. Vasamsetty, P., T. Pss, D. Kukkala, M. Singamshetty, and S. Gajula. 3D printing in dentistry—exploring the new horizons. Mater. Today Proc. 26:838–841, 2020.

    Article  CAS  Google Scholar 

  120. Venkatesan, N., V. Lavu, and S. K. Balaji. Clinical efficacy of amniotic membrane with biphasic calcium phosphate in guided tissue regeneration of intrabony defects—a randomized controlled clinical trial. Biomater. Res. 25:15, 2021.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Wang, C., Y. Chiu, A. K. Lee, Y. Lin, P. Lin, and M. Shie. Biofabrication of gingival fibroblast cell-laden bi-layered scaffold for osteoporotic periodontal regeneration. Biomedicines. 9:431, 2021.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Wang, P., Y. Li, C. Zhang, F. Que, J. Weiss, and H. Zhang. Characterization and antioxidant activity of trilayer gelatin/dextran-propyl gallate/gelatin films: Electrospinning versus solvent casting. Lwt. 128:1095, 2020.

    Article  Google Scholar 

  123. Wang, Z., and Y. Yang. Review article application of 3D printing in implantable medical devices. BioMed Res. Int. 2021. https://doi.org/10.1155/2021/6653967.

    Article  PubMed Central  PubMed  Google Scholar 

  124. Wang, J., Y. Zhang, N. H. Aghda, A. R. Pillai, R. Thakkar, A. Nokhodchi, and M. Maniruzzaman. Emerging 3D printing technologies for drug delivery devices: current status and future perspective. Adv. Drug Deliv. Rev. 174:294–316, 2021.

    Article  CAS  PubMed  Google Scholar 

  125. Weems, A. C., M. M. Pérez-Madrigal, M. C. Arno, and A. P. Dove. 3D Printing for the clinic: examining contemporary polymeric biomaterials and their clinical utility. Biomacromolecules. 21:1037–1059, 2020.

    Article  CAS  PubMed  Google Scholar 

  126. Woo, H. N., Y. J. Cho, S. Tarafder, and C. H. Lee. The recent advances in scaffolds for integrated periodontal regeneration. Bioact. Mater. 6:3328–3342, 2021.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Wu, T., L. Huang, J. Sun, J. Sun, Q. Yan, B. Duan, and B. Shi. Multifunctional chitin-based barrier membrane with antibacterial and osteogenic activities for the treatment of periodontal disease. Carbohydr. Polym. 269:1182, 2021.

    Article  CAS  Google Scholar 

  128. Xia, D., F. Yang, Y. Zheng, Y. Liu, and Y. Zhou. Research status of biodegradable metals designed for oral and maxillofacial applications: a review. Bioact. Mater. 6:4186–4208, 2021.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Xu, X., A. Awad, P. Robles-Martinez, S. Gaisford, A. Goyanes, and A. W. Basit. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J. Control. Release. 329:743–757, 2021.

    Article  CAS  PubMed  Google Scholar 

  130. Xu, X., S. Ren, L. Li, Y. Zhou, W. Peng, and Y. Xu. Biodegradable engineered fiber scaffolds fabricated by electrospinning for periodontal tissue regeneration. J. Biomater. Appl. 36:55–75, 2021.

    Article  CAS  PubMed  Google Scholar 

  131. Yadalam, P. K., D. Arumuganainar, R. Kasipandian, and K. Varatharajan. Nanodrug delivery systems in periodontics. Int. J. Pharm. Investig. 11:5–9, 2021.

    Article  CAS  Google Scholar 

  132. Zafar, M. S., F. Amin, M. A. Fareed, H. Ghabbani, S. Riaz, Z. Khurshid, and N. Kumar. Biomimetic aspects of restorative dentistry biomaterials. Biomimetics. 5:34, 2020.

    Article  CAS  PubMed Central  Google Scholar 

  133. Zare, P., M. Aleemardani, A. Seifalian, Z. Bagher, and A. M. Seifalian. Graphene oxide: opportunities and challenges in biomedicine. Nanomaterials. 11:1083, 2021.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Zhang, C., D. Hui, C. Du, H. Sun, W. Peng, X. Pu, Z. Li, J. Sun, and C. Zhou. Preparation and application of chitosan biomaterials in dentistry. Int. J. Biol. Macromol. 167:1198–1210, 2021.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The current research was supported by the research grant provided by the Indian Council of Medical Research (ICMR), New Delhi, Vide Research Grant: No. 5/3/8/45/2020-ITR) and financial support from MHRD (Ministry of Human Resource and Development), India.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhabani K. Satapathy.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Mathur, V.P. & Satapathy, B.K. Biodegradable and Biocompatible 3D Constructs for Dental Applications: Manufacturing Options and Perspectives. Ann Biomed Eng 49, 2030–2056 (2021). https://doi.org/10.1007/s10439-021-02839-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02839-3

Keywords

Navigation